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I Recent Developments in the Generic Task Approach io
Knowledge Based Systems: Introduction

I Expert systems have emerged within the last decade as a result of research within
artificial intelligence in problem solving and knowledge representation. Expert
system technology is already found in design and diagnostic systems for a variety
of domains. The fi~st generation of expert systems attempted to make use of a
uniform mode of knowledge representation and a uniform control algorithm, no
matter what task was to be considered. A package of uniform representation and
control strategy, such as rules with chaining or first order formulae with resolu-
tion, is often a Turing universal architecture, and as such can "in principle" carry
out the computations needed for expert system problem solving. Unfortunately,
universality does not by itself guarantee that a supportive environment for expert
problem solving systems has been found. First, universality does not necessarily
provide an efficient way to perform aI '!. m solving task. Second, a universal
architecture may result in an artiticia, ind f.-rced form of knowledge represen-
tation. This artificiality then means that ,. Jing a system is made difficult, and
also means that the ability to explain how the expert decision was made-which
is important for practical expert system applications-may not be supported.

The generic task approach to knowledge based systems has from the outset
taken issues of efficiency and knowledge organization to be crucial. Unlike
approaches that focused on selecting a universal architecture for expert systems,
the generic task approach finds task specific inference patterns and types of
knowledge organization that will be useful in building expert systems for design
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and diagnosis. At present, numerous systems for design and diagnosis have been
built, and the generic tasks of recognition, hierarchical classification, abductive
assembly of hypotheses, and routine design have been used by themselves and
in various combinations to achieve good performance. Explanation of expert
system decisions has been supported, and the programming task of organizing
the appropriate knowledge has been aided by the natural design for the generic
task programming tools, now part of the Generic Task Toolset.

I Knowledge based systems using task specific architectures are steadily winning
recognition as significant improvements over earlier attempts at building expert
systems. There are generic problem solving strategies out of which complex

knowledge based reasoning systems can be built. These generic strategies make
use of knowledge organized in forms that are appropriate to the task and its
characteristic control regime, and in that way help encode the expert's knowledge
of a domain in a deeper way than is obtained using a typical rule based system.

The research that AFOSR has supported in grant 87-0090 (which continues re-
search previously supported by AFOR).has developed the basic methodology of
the generic task approach, has explored how deeper models and causal reasoning
may be of use in problem solving systems, has helped in the production of a
generic task toolset to encourage research on integration and useful in pracji-
cal applications, and has examined ways in which the efficiency and robustness
of systems can be improved-by learning, making use of parallelism, and by
considering new environments for implementing generic tasks. (

ISurvey of Recent Developments in the Generic Task Ap-
proach to Knowledge Based Problem Solving Systems

3 The progress that has been made in developing the Generic Task approach over
the span of the two years of support by AFOSR grant 87-0090 can be surveyed
by describing the results that have been presented in publications during that
period.

I Generic Tasks

We have developed the theory of generic tasks, each of which is a generic prob-
lem solving type, with characteristic types of knowledge and inference patterns
[11, 2, 10]. We have shown how complex problems such as diagnosis and de-
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sign can be decomposed into an interacting collection of generic tasks [14] The
advantages of the Generic Task approach for knowledge acquisition have been
developed in [2]. This view has also resulted in a number of high-level tools and
a generic task toolkit that helps integrate these high-level tools [18, 3, 27] Our
work has been pioneering in this area and has pulled the field toward task-specific
problem-solving architectures.

Deep Models and Causal Reasoning

We have developed a framework for understanding the role of causal reasoning in
diagnosis [8, 61, especially how to reason from structure to behavior of a system
[7]. how to organize the behavioral causal knowledge by using the functions of
the device [51. and how to produce diagnostic knowledge from this functional-
causal representation [32, 191.
Two major contributions have been the development of an approach called con-
solidation [71 for reasoning from structure to behavior and a representation called
the functional representation [32] to encode certain kinds of causal knowledge
about a system. Thz claim is that this representation incorporates some degree
of understanding as opposed to more associational or compiled knowledge.

Generic Task Twlset

The Generic Task toolset is available to the user community. CSRL and DSPL in
both lntcrlisp and KEE versions are currently available, and commercial versions
are being marketed to the user community by a consortium headed by Battelle
Al Center. A Common LISP version of the toolset is under development with
support from DARPA, DEC. IBM and AFOSR [30].

Learning, Parallelism, Universal Subgoaling

Research on task specific knowledge based problem solving systems is also be-
ing directed to increase the flexibility, generality, and efficiency. A variety of
approaches that make use of new architectures and implementational possiblities
are being explored.

The issue of alternative (or cooperating) architectures has been investigated in
a number of papers [121. One important claim, that connectionist (or parallel
distributed ) architectures, like symbolic approaches, are both of interest for in-
vestigating the information processing activities of intelligence, usefully clarifies
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the competition between the approaches [151.

The possiblity of integrating task specific architectures with general problem
solving architectures has been studied and it has been established that task spe-
cific architectures can be built in a general problem solving architecture, such
as that provided by the universal subgoaling architecture of SOAR [28]. It is
also likely that implementation of generic task problem solving subspaces within
general problem solving systems will reduce the brittleness of the resulting prob-
lem solving systems, and ease problems of integrating generic tasks in complex
systems. Brittleness may also be reduced in systems taking advantage of a rich
supply of case information: integrating knowledge of cases into design systems
is under investigation [211.

Abductive assembly of hypotheses is one generic task identified at LAIR [291
that has been of particular value in multiple fault diagnostic systems. Abductive
assembly can be computationally expensive [11, and it is therefore of particu-
lar interest to formulate parallel algorithms for the task; versions of a parallel
algorithm have been developed [26, 24].

3Finally, because knowledge-based systems may fail because the knowledge they
embody is defective, attempts are being made to develop systems with a capacity
for corrective learning to modify their existing knowledge base when incorrect
answers are produced. A procedure that compares correct explanations with the
system's incorrect explanations to decide what to modify has been developed for
use in a gait anomaly diagnostic system [9].
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I Generic Tasks for Knowledge-Based Reasoning: The
"Right" -Level of Abstraction for Knowledge Acquisition*

Tom Bylander and B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio, USA 43210

Abstract

I Our research strategy has been to identify generic tasks -- basic combinations of
knowledge structures and inference strategies that are powerful for dealing for
certain kinds of tasks. Our strategy is best understood by considering the
"interaction problem," that the representation of knowledge strongly interacts with
the inference strategy that is applied to the knowledge and with the task that the
knowledge is used for. The interaction problem implies that different knowledge
acquisition methodologies will be required for different kinds of reasoning, e.g., a
different knowledge acquisition methodology for each generic task. We illustrate
this using the generic task of hierarchical classification. Our proposal and the
interaction problem call into question many generally held beliefs about expert
systems, such as the belief that the knowledge base should be separated from the
inference engine.

Introduction

Knowledge acquisition is the process that extracts knowledge from a source (e.g. a
domain expert or textbook) and incorporates it into a knowledge-based system.
Because a knowledge-base representation is its target, knowledge acquisition cannot
be separated from a broader theory of knowledge-based reasoning. A solution to
knowledge acquisition must be compatible with a solution to the general problem of
knowledge-based reasoning.

For some time now, we have been developing a theory of generic tasks that
identifies several types of reasoning that knowledge-based systems perform and
provides a overall framework for the design and implementation of such

*Research supported by Air Force Office of Scientific Research, grant 82-0255, National Science
Foundation grant MCS-8305032, and Defense Advanced Research Projects Agency, RADC Contract
F30602-85-C-0010.II
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systems [Chandrasekaran 83, Chandrasekaran 84, Chandra 86 861. In this paper, 3
we present our theory as a way to exploit the interaction problem. Because each
generic task exploits it differently, each one should be be associated with a different
knowledge acquisition methodology. U
First, we pose, and discuss the "interaction problem." Next, we review our theory
of generic tasks: the characteristics of a generic task and the generic tasks that I
have been identified so far. In view of the interaction problem, we propose our
theory of generic tasks as a framework for identifying different knowledge
acquisition methodologies. We illustrate this using the generic task of hierarchical I
classification. Finally, we reflect on a number of beliefs that have driven much of
the past research on knowledge acquisition and knowledge-based reasoning.

The Interaction Problem

The interaction problem is this:

The representation of knowledge strongly interacts with the inference
strategy that is applied to the knowledge and with the task that is performed
with it.

In other words, -knowledge representations have a close relationship to how they are
used to solve problems. Knowledge is dependent on its use. The interaction
problem is not a new concept. Minsky, in his famous frame proposal, argues that
"factual and procedural contents must be more intimately connected to explain the
apparent power and speed of mental activities" [Minsky 75 - p. 211]. Marr has
noted that "how information is represented can greatly affect how easy it is to do
different things with it" [Marr 82 - p. 21]. Our argument takes a different
perspective, that the inference strategy and task influence what knowledge that is
represented, i.e., we will represent knowledge so that it takes advantage of how we
are going to use it.

The interaction problem, if true, has serious implications for how knowledge
acquisition should be done. Because some knowledge representation must be the
target of knowledge acquisition, knowledge acquisition methodologies must take the
interaction problem into account. Also, if different kinds of reasoning have
different kinds of interactions, there is a need for a different knowledge acquisition
methodology for each kind of reasoning. 3
The Interaction Problem for General Knowledge Representations

Each of the major forms of knowledge representation - rules, logic, and frames --

are subject to the interaction problem. Knowledge is affected by the task (different
tasks require different knowledge) and by inference strategy (knowledge is adapted I
to the strategy). In addition to giving examples of the interaction problem, we I
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also wish to emphasize that the generality of a representation does not make the
interaction problem disappear.

The Interaction Problem in Rules. The idea of rules is to explicitly map situations
to actions. Naturally then, the focus is on determining what conditions characterize
the situations .and what conclusions characterizes the actions. The result is that
two different tasks in the same domain can have different rules representing the
"same" knowledge. For example in diagnosis, rules of the form "symptom -- >
malfunction" will be implemented, while in prediction of symptoms, the rules will
be in the form "malfunction -- > symptom". In each case, the rules will be tuned
to the task that is being performed. One might argue that there is no problem
with keeping both tasks in mind, and so both kinds of rules can be implemented
at the same time. Of course, given that one has already taken the interaction
problem into account, the knowledge base then will have rules appropriate for the
tasks to be performed.

Another source of interaction is that special programming techniques are needed to
encode task-specific inference strategies. For example, R1 [McDermott 821, which is
implemented in OPS5 [Forgy 81], performs a sequence of design subtasks, each of
which is implemented as a set of production rules. However, OPS5 has no
construct equivalent to a subtask, so the grouping of rules and the sequencing from
one set of rules to another are achieved by programming techniques. Clearly, Ri's
task structure has had an significant effect on how knowledge was encoded in
OPSS's production rule representation.

Different inference strategies for rules are also a source of interaction. If
EMYCIN's backward-chaining strategy is used, rules can combine with other rules
to increase or decrease confidence in a given conclusion [van Melle 79]. On the
other hand, if OPS5's recognize-and-act strategy is used, only one rule at a time
can fired, so that situations must be matched to actions much more exactly. Also,
the "context" must be carefully controlled to ensure that appropriate rules are
considered. Note that the difference is not whether EMYCIN does forward- or
backward-chaining, but that EMYCIN allows rules to act in parallel, while OPS5
applies rules in serial.

The Interaction Problem in Logic. Rule-based and logic-based representations are
fairly similar with respect to the interaction problem. Like rules, logic provides for
a direct way for drawing conclusions from situations. In the context of a specific
task, it is only useful to encode propositions that can make task-relevant
conclusions. Propositions for a diagnostic system would be like "if symptom A,
then maybe malfunctions X or Y or Z," while a prediction system would have
propositions like "if malfunction X, then maybe symptoms A or B or C." This
example also shows one danger in applying both kinds of propositions
indiscriminately. Given some confidence in malfunction X, then some confidence in
symptom A should be inferred, followed by inferring some confidence in
malfunctions Y and Z, which probably wasn't intended.



Logic-based representations are also like rules with respect to implementing the 3
structure of a task and dealing with different inference strategies. To implement
RI in predicate logic, for example, a subtask construct would also have to be
implicitly programmed. Two different inference strategies for logic, such as i
PROLOG and resolution theorem proving, are quite different to use.

The Interaction Problem in Frames. The emphasis in frame representations is oil
describing the conceptual structure of the domain. However, different tasks might
need quite different conceptual structures. For example, classificatory problem
solving [Gomez and Chandrasekaran 81, Clancey 851 in general needs a g
generalization hierarchy (hypothesis-subhypothesis), while routine design fBrown and
Chandrasekaran 84] in general needs a structural hierarchy
(component-subcomponent).

Frames are intended to flexibly interact with the inference strategy. After all, the
idea of procedural attachment is to embed procedures in the frames so that the
appropriate inferences are triggered.

Exploiting the Interaction Problem I
The interaction problem will not go away no matter what representation is chosen.3
Every knowledge-based system will be developed, debugged, and maintained so its
knowledge works with its inference strategy and so its knowledge in combination
with its inference strategy solves a certain set of problems. No one undertakes an
exhaustive study of a domain, i.e., acquires any and all the knowledge associated
with that domain. It would take too long and we humans are too lazy anyway.
We have learned that only a selected portion of domain knowledge needs to be I
acquired to perform specific tasks.

Instead of trying to lessen the impact of the interaction problem, our research
strategy has been to exploit it. Our strategy is not new; exploiting the interaction
problem has been the "untold story" of knowledge-based systems, and perhaps of
Al in general. This should be obvious to anybody who has ever maintained a i
knowledge-based system. To find and correct an error, one has to understand both
the problem solving and the knowledge base, and how they combined to cause the
error.

It should not be surprising that different representations can be exploited in
different ways and are thus more applicable to certain kinds of tasks than others. I
This is where our theory of generic tasks comes in. Our intent is to propose kinds
of reasoning in which the representation and the inference strategy can be exploited
to solve certain kinds of tasks. For a particular domain and task, our intent is to
encode a selected portion of domain knowledge into an efficient and maintainable
problem solving structure. 3

U
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3 The Proposal

Intuitively one would think that diagnosis in different domains would have certain5 types of reasoning in common, and that design in different domains would also
have certain types of reasoning in common, but that diagnostic reasoning and
design problem solving will be generally speaking different. For example, diagnostic
reasoning gene~rally involves malfunction hierarchies, rule-out strategies, setting up a
differential, etc., while design involves device/component hierarchies, design plans,
ordering of subtasks, etc. However, the formalisms (or equivalently the languages)
that have been commonly used for knowledge-based systems do not capture these
distinctions. Ideally, diagnostic knowledge should be represented by using the
vocabulary that is appropriate for diagnosis, while design knowledge should have a
vocabulary appropriate for design. Our approach to this problem has been to
identify generic tasks - basic combinations of knowledge structures and inference
strategies that are powerful for dealing for certain kinds of tasks. The generic
tasks provide a vocabulary for describing reasoning tasks, as well as for designing
knowledge-based systems that perform them.

I Characterization of a Generic Task

3 Each generic tasks is characterized by information about the following:

1. The type of task (the type of input and the type of output). What isSthe function of the generic task? What is the generic task good for?

2. The representation of knowledge. How should knowledge be organized
and structured to accomplish the function of the generic 'task?

3. The inference strategy (process, problem solving, control regime). What
inference strategy can be applied to the knowledge to accomplish the
function of the generic task?

3 4. The type of concepts that are involved in the generic task. What
concepts are the input and output about? How is knowledge organized
in terms of concepts? How does the inference strategy operate on
concepts? In essence, we adopt Minsky's idea of frames as a way to
organize the problem solving process [Minsky 75].

I The phrase "generic task" is somewhat misleading. What we really mean is an
elementary generic combination of a task, representation, and inference strategy
about concepts. The power of this proposal is that if a problem matches the
function of a generic task, then the generic task provides a knowledge
representation and an inference strategy that can be used to solve the problem. It
should be noted that a problem might match the function of more than one generic
task, so that several strategies might be used to solve the problem, depending on
the knowledge that is available. Also, generic tasks can be composed for moreI
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complex reasoning, i.e., a generic task may call upon another generic task to solve
a subproblem.

Examples of Generic Tasks

Our group has identified several generic tasks. Here, we briefly describe the 3
generic tasks of hierarchical classification [Gomez and Chandrasekaran 811 and
object synthesis by plan selection and refinement [Brown and Chandrasekaran 84',

Hierarchical Classification. Task: Given a description of a situation, determine
what categories or hypotheses apply to the situation. 5
Representation: The hypotheses are organized as a classification hierarchy in which
the children of a node represent subhypotheses of the parent. There must be
knowledge for calculating the degree of certainty of each hypothesis.

Inference Strategy: The establish-refine strategy specifies that when a hypothesis is
confirmed or likely (the establish part), its subhypothesis should be considered (the
refine part). Additional knowledge may specify how refinement is performed, e.g.
to consider common hypotheses before rarer ones. If a hypothesis is rejected or
ruled-out, then its subhypotheses are also ruled-out.

Important Concepts: Hypotheses. 3
Examples: Diagnosis can often be done by classification. In planning, it is often
useful to classify a situation as a certain type, which then might suggest an
appropriate plan. MYCIN [Shortliffe 761 can be thought of as classifying a patient
description into an infectious agent hierarchy. PROSPECTOR rDuda et al. 80 i can
be viewed as classifying a geological description into a type of formation. I
Object Synthesis by Plan Selection and Refinement. Task: Design an object
satisfying specifications. An object can be an abstract device, e.g. a plan or 3
program.

Representation: The object is represented by a component hierarchy in which the
children of a node represent components of the parent. For each node, there are
plans that can be used to set parameters of the component and to specify
additional constraints to be satisfied. There is additional knowledge for selecting I
the most appropriate plan and to recover from failed constraints.

Inference Strategy: To design an object, plan selection and refinement selects an I
appropriate plan, which, in turn, requires the design of subobjects at specified
points in time. When a failure occurs, failure handling knowledge is applied to

make appropriate changes. I

I
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3 Important Concepts: The object and its components.

Examples: Routine design of devices and the synthesis of everyday plans can be
performed using this generic task. The MOLGEN work of Friedland 'Friedland 791
can. be viewed in this way. Also R's subtasks TMcDermott 82 can be understood
as design plans.

Other Generic Tasks

I Other generic tasks that have been identified include knowledge-directed information
retrieval [Mittal et al. 84], abductive assembly of explanatory hypotheses rJosephson
et al. 841, hypothesis matching [Chandrasekaran et al. 82', and state
abstraction [Chandrasekaran 831. More detail on the overall framework can be
found in [Chandra 86 861.I

Exploiting Classificatory Problem Solving

I Each generic task exploits domain knowledge in a different way; it calls for
knowledge in a specific form that can be applied in a specific way. Because the
knowledge acquisition methodology must be able to extract and select the
appropriate knowledge, each generic tasks calls for a different knowledge acquisition
methodology. For illustration we consider the generic task of hierarchical
classification. In classification, the emphasis is on obtaining the classification

hierarchy that contains the hypotheses that are relevant to the task and adaptable
to the strategy. This section does not provide a complete knowledge acquisition
methodology for classification, but outlines a number of considerations that a
methodology must take into account. Additional guidelines for using classification
can be found elsewhere [Mittal 80, Bylander and Smith 85].

t Determining Hypotheses of Interest

Classificatory problem solving is useful for determining the hypotheses that apply to
a situation. The first step then is to decide upon the hypotheses that the problem
solver should potentially output. For example in diagnosis, the potential

I malfunctions of the object should be considered. The goal here is to determine the
specific categories that should be produced, so if a general category is considered
(e.g. "something is wrong with X"), then more specific categories should be3 generated (e.g. by asking "What types of problems can occur with X?").
Determining the usefulness of a category is discussed below.

I Analyzing Commonalities among Hypotheses

Once a collection of classificatory hypotheses have been identified, one needs to
determine the commonalities among the hypotheses. These commonalities become
potential candidates for mid-hierarchy hypotheses in the classification hierarchy.I

I



The easiest example to handle is when one hypothesis is clearly a subhypothesis of 3
another i.e., it asserts a more specific category. In general, two hypothesis may
have commonalities along the following lines:

" Definitional - The two hypotheses share a definitional attribute, e.g.,
hepatitis- and cirrosis are liver diseases. Rain and snow are forms of
precipitation.

" Appearance - The two hypotheses are recognized using common pieces of
evidence. Both cholestasis and hemolytic anemia have jaundice as a
common symptom. Wet grass is symptomatic of both rain and dew.

" Planning - The two hypotheses are associated with similar plans of
action. Both the common cold and allergies are reasons to take plenty
of facial tissue with you. Either lightning or strong winds are good
reasons for staying inside.

The ideal hypothesis asserts some definitional attribute over all its subhypotheses,
has an appearance common to all its subhypotheses, and also provides constraints
on the plans associated with its subhypotheses.

In general, the hierarchy should follow a definitional decomposition whenever
possible. However, there are cases where appearance is an important consideration.
For example, the Dubin-Johnson syndrome is a benign hereditary disorder that
mimics key symptoms of cholestasis (jaundice, conjugated hyperbilirubinemia - high
amounts of conjugated bilirubin in the blood). Because it looks so much like
cholestasis, it is most useful to make it a subhypothesis of cholestasis. 3
Assessing Evidence for or'against Hypotheses

The above two steps should generate a large number of hypotheses. However, not
all of them will be useful for classificatory problem solving, i.e., there is a need to
select a classification hierarchy that can be used to exploit the establish-refine
strategy, getting rid of any intermediate hypothesis do not provide additional
problem solving power. Because the language we have used for classification,
CSRL, requires a classification tree [Bylander and Mittal 861, we have become
familiar with some of the strategies for evaluating hypotheses. However, the
following questions are relevant whether a tree or tangled hierarchy is used.

* Are there sufficient criteria to distinguish the hypothesis from other
hypotheses? In other words, does this hypothesis have a different
appearance from other hypotheses?

* Is there evidence that distinguishes the hypotheses from its siblings?
Because the establish-refine strategy does not consider a hypotheses
unless its parent (or one of its parents in a tangled hierarchy) is

I
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3 relevant, evidence that distinguishes the hypothesis from its siblings is
especially important.

3 * Is the evidence normally available? Evidence for or against an
hypothesis is not very useful if is not likely to be available to the
system when it is running. For example in medical diagnosis, somr
tests are relatively risky, expensive, or time-consuming to perform, so it
is best to use hypotheses that rely on outward signs and symptoms and
generally available laboratory data.

We have generally used another generic task, hypothesis matching, for mapping
evidence to confidence values in hypotheses [Chandrasekaran et al. 82]. However,
we do not want to complicate the central issue by considering combinations of
generic tasks. Examples of how hypothesis matching can be exploited are provided3 in [Sticklen et al. 85] and [Bylander and Mittal 86].

Debugging Hypotheses

An important part of knowledge acquisition is being able to find out what
knowledge was incorrect or left out when something goes wrong. In classification,
the following problem can occur.

" Wrong confidence value - Debug the knowledge that produces the

confidence value. Sticken et al. [Sticklen et al. 85] describes how
hypothesis matching can be debugged. The problems below assume that3 the confidence values are reasonable in view of the evidence considered.

" Bad hierarchical structure - If a hypothesis was incorrectly considered or
incorrectly left unconsidered, the problem may be simply that the
hypothesis is in the wrong place in the hierarchy. The hypothesis is
not, by definition or appearance, a subhypothesis of its parent (or some

I other ancestor).

" Failure to consider - Another reason why a hypothesis might not be
considered is because an ancestor was not refined. The problem might
be that there isn't enough evidence to support a high level of confid.,,ce
in the ancestor. In this case, a restructuring is necessary in order to
provide a way for establish-refine to reach the hypothesis. Less drastic
solutions are lowering the threshold for refining the ancestor or
considering more evidence for the ancestor.

I 9 Establish-refine strategy is too simple - Sometimes a hypothesis should
not be considered even if its parent is established. For example, if one
of the hypothesis's siblings is confirmed, and the hypothesis is
incompatible with its siblings, then the hypothesis should not be
considered. The solution here is o adapt the establish-refine strategy to
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take this additional information into account. It should be noted that
this problem is not a defect of establish-refine. Instead, it shows that
establish-refine is really a family of strategies. The CSRL language, for
example, jrovides a default establish-refine strategy and allows other U
establish-refine strategies to be defined.

The Point of Classification I
The real reason for doing hierarchical classification is to obtain the hypotheses that
describe a situation. Therefore, we should adopt knowledge acquisition
methodologies that are intended to produce efficient and maintainable classification
systems. To do this, we need to exploit the interactions between the
representation, inference strategy, and the task. For classification, it means that
each potential hypotheses of a classification hierarchy must be evaluated with
respect to how well it interacts with the establish-refine strategy and whether the
task may need to output it.

A Reexamination of Past Beliefs I
Some generally held beliefs about knowledge-based systems need to be reexamined
in light of the interaction problem and our proposal to exploit it. These beliefs
have served the first generation of knowledge-based systems well, especially in
stimulating much research and discussion. However, we believe it is the time to
reconsider them.

Belief #1: Knowledge should be uniformly represented and controlled. 3
This belief denies the interaction problem and implies that there is nothing to be
gained by using different representations to solve different problems. Our
experience is that when the problems of a domain match the generic tasks, the
generic tasks provide explicit and powerful structures for understanding and
organizing domain knowledge. 3
Belief #2: The knowledge base should be separated from the inference engine.

This belief denies that the inference strategy affects how knowledge is represented.
However, its real effect has been to force implementors to implicitly encode
inference strategies within the knowledge base. Both MYCIN, whose diagnostic
portion is best understood as classification, and RI, which is best understood as
routine design, show that this separation is artificial.

Belief #5: Control knowledge should be encoded as metarules.

Although metarules address the problem of how to have multiple, explicit strategies 3
in a rule-based system, the metarule approach ignores other aspects of the
interaction problem. The "separation of control knowledge from domain

I!



I knowledge" promotes the view that domain knowledge can be represented
independent of its use, i.e., that different sets of metarules can be applied as
needed. However, given a clear strategy (whether metarules or inference engine)
and a task to be performed, the domain knowledge will be adapted to interact with
the strategy to solve the task.

3 Belief #4: The ontology of a domain should be studied before considering how to
process it.

5 We believe that ontology should not be performed just for its own sake, but in
view of the tasks that need to be done. For example, to apply classification to a
domain, there is a need to focus on the hypothesis space and evaluate hypotheses.
Although other knowledge structures (e.g. component hierarchies, causal networks)
may be useful for other generic tasks, if classification is going to be performed,
then knowledge acquisition should concentrate on those aspects of the domain that
are relevant to classification. This is not to say that a domain shouldn't be
analyzed to identify what generic tasks are appropriate; however, this kind ofa domain analysis does not require an exhaustive ontology of the domain.

Belief #5: Correct reasoning is a critical goal for knowledge-based systems.

I Everything else being equal, being correct is better than being incorrect. However,
an emphasis on correctness detracts from more critical issues. One of those issues
is developing an understanding of the appropriate strategies to be applied to a
task. For example, there has been much research and debate about normative
methods for calculating uncertainty. The reasoning problem, though, is not how to
precisely calculate uncertainty, but how to avoid doing so. In diagnosis, e.g., there
is much more to be gained by using abduction (assembling composite hypotheses to
account for symptoms), then by independently calculating the degree of certainty of3 each hypothesis to several decimal places of accuracy.

Belief #6: Completeness of inference is a critical goal for knowledge-based systems.

I Everything else being equal, being complete is better than being incomplete, but an
emphasis on completeness ignores the fact that certain kinds of inferences will be
more important than others for a particular task. For example in our description
of classification, we did not mention that when a subhypothesis is confirmed, one
can infer that its ancestors are also confirmed. However, that inference is not the
cr'-cial aspect of classification. The important inference is that when a hypothesis
is confirmed or likely, then its subhypotheses should be considered.

3 Belief #7: A representation that combines rules, logic, frames, etc. is what is
needed.

SSuch representations appear to be a good compromise since they let you represent
knowledge in the "paradigm" of your choice. Unfortunately, this is, at best, only

I
I



an interim solution until something better is found. None of the individual
representations fully address the interaction problem, nor do they distinguish
between different types of reasoning. 3

Generic Tasks at the "Right" Level of Abstraction

The first generation of research into knowledge-based systems has conducted a
extensive search for a "holy grail" of representation, in which knowledge could be
represented free of assumptions of how it would be used. For any particular task,
though, certain kinds of inferences will become critical to the task, and
consequently, domain knowledge needs to be organized so those inferences are
performed efficiently. This is how the interaction problem arises, and why it will 5
never go away. Instead of futilely trying to avoid it, the interaction problem needs
to be studied and understood so that methods of exploiting it can be discovered
and applied.

Our theory of generic tasks is an attempt to provide the "right" level of
abstraction for this and other problems of knowledge-based reasoning. Each generic
task provides a knowledge structure in which knowledge can be organized at a
conceptual level. In classification, the concepts are hypotheses organized as a
classification hierarchy. Each generic task identifies a combination of a task
definition, representation, and inference strategy that exploits the interaction
problem. We have shown how the generic task of classification can be associated
with a knowledge acquisition methodology that takes advantage of the interactions I
between domain knowledge and classificatory problem solving.
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Qualitative Representation of Behavior in the Medical Domain

Tom Bylander, Jack W. Smith, Jr., M.D.', and John R. Suirbely, M.D.*
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There is a need for models of the human body which can predict and explain behavior based on
inexact information and on changes in structure and behavior. We present a framework for
representing the structure and behavior of physical systems and apply it to the human
cardiovascular system. Our framework allows for hierarchical representation of physical systems, and3 facilitates two kinds, of reasoning processes: composition of behaviors and qualitative simulation.

I. Need for Model-Based and Qualitative 2. Why Hierarchical Representations of
Reasoning in the Medical Domain Structure and Behavior

Most knowledge-based programs depend upon compiled Any model of the human body needs to consider the
knowledge, i.e., their knowledge associates data with following two problems:
conclusions, but does not represent the causal
relationships among the data and conclusions. For * Changes in the body's physical structure may
example, MYCIN '10 associates the datum "headchgetebd'bhair
injury" with a certain amount of confidence in the * Changes in the behavior of a body part may
conclusion "'E. Coli causing meningitis," but MYCIN change the body's behavior.
does not have knowledge which explains this association, To handle these cases, a representation needs to express
in this case, how head injury can result in E. Coli the structure and behavior of the human body, and
causing meningitis. In addition, MYCIN would need an reasoning processes need' to be able to take this
exhaustive set of rules in order to block associations information into account.
when they are not appropriate (e.g., if the head injury
occurred in a sterile environment), and to give weight to Another problem is that the multitude of body parts
conclusions in causally similar circumstances (e.g., if makes it difficult to effectively reason about its overall
other pathways to -the meninges are available to behavior, necessitating a hierarchical representation. In
E. Coli). Examples like these are not just true for our framework, the hierarchy is structural: the body and
MYCIN, but occur whenever compiled knowledge is not its systems can be described as a configuration of
supported by causal knowledge, smaller systems, each with its own behavioral

One approach to this problem is to develop a description. Advantages of a hierarchically organized
representation which models the domain and permits the representation are that more detailed knowledge is not
use of reasoning processes to predict and explain needed until it is relevant, and that the representation
behavior. [n a medical setting, such an approach needs can be checked by determining whether the behavior of
to work under the following constraints: a system is consistent with the behavior of its

" Incomplete information. Complete and precise data constituents.
on a patient are not available.on apatint re nt aailale.3. A Behavioral Representational System

" Variability. The model should be able to
accommodate normal variability due to factors such In this section, we briefly describe the behavioral
as age, sex, race, etc. representation that Bylander and Chandrasekaran have

been developing Ti, and illustrate its application to the" Abnormality. It is expensive to develop different cardiovasular sy st em. This representation facilitates a
models for each possible disease and combination ca lar syst his ericenttinfaciiteof diseases. It would be better to develop a single process called consolidation for efficiently inferring the

behavior of a system from the behavior and structure of
model which can be readily modified to reflect its elements. The major processing sequence of
abnormal situations. consolidation is to hypothesize a composite component

Current quantitative models can do prediction consisting of two other components, and then to infer
accurately, but are poor at satisfying the above the behavior of the composite from the behavioral
constraints and at causal explanation. Our research description of the components. Successful application of
explores the use of qualitative reasoning on hierarchical this sequence on increasingly larger composite
representations of the behavior and structure of the components results in inferring the behavior of the
human body. Qualitative resoning can be performed in whole system and in explaining how the overall behavior

ethe context of incomplete information and large ranges is caused by the components' behavior.
of variability, while still providing substantial predictive The representation can also be used to predict
and explanatory power. We present a general behavior. Given initial conditions and outside
framework for representing physical systems, and apply interactions, qualitative simulation can be performed in ait to the cardiovascular system. Our primary concern is
to show how causal knowledge can be adequately manner similar to current proposals 2, 3, 3.

represented.
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3.1. Elements 9 Inf/lence. The object ,re, !o :io. ... . ,,

A physical system consists of objects which cause it to kind of substance. There are r~o i,

behave in a certain way. As a first approximation. according to the spatial relationihip of 'n.

these objects can be divided into two classs: influence to the structure.

" Components. These form the physical structure of Expel. The object tries to move a iubstance
the system. Veins, arteries, and heart chambers from for to) an internal container. Tne
and valves are examples of components. chambers of the heart have 'tzpel blood

behaviors.
" Substances. These move between the components Pump. The object tries to move a substance 1

of the system, and are what the components act through some path. The heart has a pump
upon. The term 'substance" is intended to also blood behavior.
include non-material phenomena that are
commonsensically thought of as substances, such as * Move. The object moves a specified kind of ,
heat and light. Blood and nervous signals are substance from one container to another along a
other examples of substances. specified path. The cardiovascular s)stem has a

Stru ural relationships among components and move blood behavior. MWove behaviors are
implicitly constrained by the amount and capacitysubstances are of two general types: of the containers. 1

* Connection between components. A connection
implies that the components are next to each other * Create. The object creates a specified kind of
spatially, and that certain kinds of substances can substance in a container. The nervous system has
pass through the connection. a create signal behavior. Bone marrow (which we

will not model here) has a create red blood cell
* Containment of substances. Both components and behavior.

substances may contain substances. For example,
arteries contain blood. and blood contains oxygen. * Destroy. The object destroys a specified kind of

substance in a container. A mononuclear cell has 1
Figure I illustrates our representation of the a destroy senescent red blood cell behavior. 3k

cardiovascular system's structure. Each box in the transformation of a substance can be modeled by a
figure represents a component; lines between boxes combination of destroy and create behaviors.represent connections. Cardiovascular Control j
represents that part of the nervous system which Each type of behavior is associated with quantities

regulates and synchronizes the other components. Open which specify the attributes of the behavior, e.g.. 
connections indicate where the cardiovascular system and rate of a move or create.
interacts with other systems of the body. Only two a
open connections, lung connection and There is one kind of action upon components. chnge3
interstitial connection, are shown. All the of state, in which a component changes state under
components except for Cardiovascular Control certain conditions, e.g.. when some behavior occurs or
contain blood. Blood contains a number of substances, some time limit is reached. A behavior of a component
including oxygen and carbon dioxide. may be active only under certain states. 1

The' quantities of a behavior may depend on other
lung behaviors occurring. For example, the amount of the

connection heart's pump blood behavior depends on signals from the
nervous system, i.e.. move signal behaviors.

PulmnaryA very simple model of the cardiovascular system
Circulation (figure L) would attribute pump blood behaviors to

Right Heart and Left Heart; one-way allow blood
behaviors to all the components except
Cardiovascular Control; and allow and expel signal

Right Cardiovascular Left behaviors to and from Cardiovascular Control so
Heart Control Heart it can adjust cardiac output. However, because the /

Pulmonary and Systemic Circulation do not have|
expel blood behaviors, this model would be inadequat
for any situation in which the pressure in the

Systemic Pulmonary and Systemic Circulation becomes a
significant factor, which is true for many cardiovascular
disorders.

interstitial A better model of Pulmonary and Systemic
connection Circulation would include expel blood behaviors that%

depend on the amount of blood that is contained and E
Figure 1: Components of the Cardiovascular System on signals from Cardiovascular Control to constrict

blood vessels. This would be further improved by
having the behaviors of Cardiovascular Control m

3.2. Behaviors depend on the amount of the expel blood behavior of

There are two classes of behavior: actions upon Systemic Circulation, reflecting the behavior of the
components and actions upon substances. Actions upon baroreceptors.
substances consist of the following types: Figure 2 is a simplified version of the Left Heart s3

* Allow. The object permits a specified kind of behavior in our model. The behavioral states of thef
substance to move from one place to another. A Left Heart are systole and diastole. The
vein has an allow blood behavior, synchronization of these states is controlled by signalsI



coming through the control connect ion Lef t For example. for a Mu 0 'o arise. d

Heart has two containers: the ventricle. %&hich can must move through some path ailow be.'a..,o.,;
contain blood, and the nerves, which can "contain" some "force" must direct the movement fn/be.,r,
signals, i.e.. it is where nervous signals are received. behaviors), and the substance must move' Fromr one

place to another fcontainers at each end or acircuit). Thus one causal pattern is a nup,

behavior from one container to another anv atr
pulmonan .Left Heart aorta allow behavior along the same path.

connection e Substance knowledge indexed by causal patterns
control Once a causal pattern is discovered, the attributes

connection of the caused behavior need to be determined
States: This knowledge is associated with the substance

diastole, systole that the behaviors affect. For the purnp.move
Containers: causal pattern, the rate of the movement is related

"ventricle" of blood, *nerves" of signal to the amount of the pump behavior and the

Behaviors: resistance and other attributes of the allow
allow blood from pulmonary connection to aorta behavior.

concto Composite containers. To avoid complex
allowsignal from control connection to nerves descriptions of behaviors, the internal structure of
pump blood from pulmonary connection to a behavior (such as the internal path of an allowIr pm dbehavior) can be represented as a composite

ventricle during diastole container. Composite containers also form the
pump blood from ventricle to aorta connection basis for combining expel, create, and destroy

during systole, amount proportional to behaviors.
amount-to-contractmove signal from control The components of Left Heart are given in figure 3.
connection to nerves, message contract The Mitral and Aortic Valve components have one-

change state from diastole to systole when (move way allow blood behaviors, while the Left Atri un and
signal from control connection to nerves, Left Ventricle have two-way allow behaviors. The
messagestart-systole] Left Atrium and Left Ventricle have expel blood

change state from systole to diastole when behaviors which are regulated via the atrium control

[duration(systole) >systole-duration-formulal connection and ventricle control connection.
respectively.

Figure Z: Behavior of Left Heart atrium control ventricle controlatrum ontolvenricl'e control

The two allow behaviors represent the paths where connection connection

blood and signals may move. Both of them are one-
way allows (indicated by "from ... to ..."; two-way is Left Mitral Left Aortic
indicated by "between ... and There is a pump trium Valve Ventricle Valve
blood behavior corresponding to each state. During
systole the Left Heart has a pump behavior out of pulmonary a
the aorta connection, i.e., blood is pushed out; a connection connection
pump blood behavior into the heart occurs during
diastole. The former pump behavior is dependent on Figure 3: Components of Left Heart
the heart's contractility, whose regulation is represented
here as the strength of a signal coming into the
control connection. The Left Heart changes The allow blood behavior of Left Heart (see figure

from the diastole state to the systole state when it 2) is caused by the allow blood behaviors of i'-
is signalled to do so. Changing back to the diastole components. The pump blood behaviors are a result ot
state occurs when systole is finished, the expel behaviors of Left Ventricle and the allow
Systole-duration-formula stands for the expression blood behaviors. The allow signal and change state
which determines how long systole lasts. behaviors are taken from Left Ventricle. Figure 2

was simplified by in that it essentially ignores the expel
3.3. The Behavioral' Relationships between a blood behaviors and the states of Left Atrium. A full

account of Left Heart's behavior would incorporate
System and its Elements the pump behaviors caused by the Left Atrium. as

The behavioral description of a system should follow well as the additional behavioral states.
from the behavior and structure of its components and
substances. In our representation, this relationship is 3.4. Other Components of the Cardiovascular
represented by the following:

e Causal patterns. Certain patterns of behavior and System
structure give rise to additional behaviors. The Figures 4 and 5 illustrate the behavior of Systemic
serial allow pattern is the simplest to understand; Circulation and its structure. The allow blood

two allow behaviors in serial lead to an allow behavior is one-way because the Veins do not allow
behavior through the whole path. For example, back flow. The interaction with the interstitial
two pipes which are connected form a path connection comes from the Capillaries. The expel
through the two pipes. The power of the blood behavior is a combination of the expels of its
behavioral representation is that equally simple components, primarily the Arteries and Veins. Theg patterns give rise to influence and move behaviors, expel signal behavior arises from the Arteries.



control It does not inc:ude a noron of Xentra! rtd.n-,

substances le.g.. nuids. solids) or a notion of f:i rM.v1sem
connection The difficulty is not in representing the act -rit a

type-subtype or a mixture relationship exists. bu, in m
aorta Systemic right atrium understanding how such a relationship should be uses to

con nection Circulation connection inherit or integrate knowledge about sub-tanrces.

interstitial
connection 4. Example: Modeling Some Aspects of

Containers: Hypovolemia I
"vessels" of blood, "nerves" of signal When there is a significant loss of blood. 'he

Behaviors: cardiovascular system compensates in a number of %w,
allow blood from 3orta connection to right atrium Some of these are directly represented in 'he

connection, resistance proportional to representation, e.g., the effects of signals from m
amount.to-constrict[move signal from control Cardiovascular Control, while others require
connection to nerves, message constrict) simulation knowledge, e.g., the distribution of the blood.

allow"blood components" between vessels and A hypovolemic condition would result in the followingmm
interstitial connection propagation of effects in the representation (see figurelW

allow signal between nerves and control connection 6). First, the expel behaviors of the circulation
expel blood from vessels, amount proportional to components are affected since they depend on the

amount(vessels) and constrict signal amount of blood. The Systemic Circulation sends m
this information to Cardiovascular Control by itsi

expel signal from nerves, message pressure, expel signal behavior and a move signal behavior
amount-of-pressure proportional to between the two components. Cardiovascular
amount(expel blood from vessels] Control then sends signals that result in (among other m

things) increasing the heart's contractility, and increa.sin4
Figure 4: Behavior of Systemic Circulation the resistance and pressure of the circulation. These

actions maintain and increase (if possible) the blood-
pressure (amount of Systemic Circulation's expel

barorececeptor vein control blood behavior. 3
connection arteriole control connection

conn e ction amount of blood in System Circulation

Arteries- Arterioles Capillaries Vein expel blood from Systemic Circulation

aorta connection' right atrium expel signal from Systemic Circulation

move signal from Systemic Circulation
Figure 5: Structure of Systemic Circulation to Cardiovascular Control I
The behaviors of Cardiovascular Control use the expel signal from Cardiovascular Control

signal from the Arteries to send signals which (
regulate the behaviors of the other components. For • move signals from Cardiovascular Control
example, the signal for contracting the heart can be rnto Left Heart and Systemic Circulation
represented as:
pump signal from control-center to left

heart connection, message contract, pump blood allow blood
amount-to-contract proportional to thru Left Heart thru Systemic Circulation
amount -of -pressure[ move signal from

systemic circulation connection to Figure, 6: Effects of Hypovolemia in the Model
control-center. message pressure] i

The increase in pressure is best understood by
3.5. Deficiencies in the Representation considering the components of Systemic

The representation is dependent on an artificial Circulation, and what a simulation process would
dichotomy between components and substances. The show. The pressure in the Arteries is directly relater

result is that it cannot properly represent the movement to the amount of blood in it. The increased activity ol

of components (such as the muscle and skeleton of the Left Reart moves more blood into the Arteries: the

human body), or the connections within a substance. increased resistance of the Arterioles and the Vein3

The reason for the problem is that the position of a tends to keep more blood in the Arteries. I
component is specified by what it is connected to, and Other conditions that can be partially modeled with
the position of a substance is indicated by what this representation include heart congestion and feral
container it is in. One remedy is to develop a three- circulation. If cardiac failure is represented as decreases
dimensional language for expressing the structure and contractility, then the heart's pump blood behavio
movement of objects. decreases, which results in less blood pressure.

Also, the representation of substances is too limited. Compensation by increased venous pressure raises the

mm mmmm m imNI IWPP mI



blood pressure in the Pulmonary Circulation. If outlined in mis paper i a .tep !oknr, 4.."' -

we represented the fluid now between the lungs and the reasoning about behavior. Using the caroo. a-c,7
Pulmonary Circulation. increased flo% into the system as an example. we have illustrated ho a
lungs (which can lead to pulmonary edema) would be hierarchical representation of structure and behavor can
predicted. be formulated. and how it can be used in qaltatlve

To represent fetal circulation (and some heart defects). reasoning.

additional paths for blood can be added to the
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Abstract

The effort within AI to improve the robustness of expert systems has led to
increasing interest in "deep" reasoning, which is representing and reasoning about
the knowledge that underlies the compiled knowledge of expert systems. One view
is that deep reasoning is the same as causal reasoning. Our aim in this paper is
to show that this view is naive, specifically that certain kinds of causal models
omit information that is crucial to understanding the causality within a physical
situation. Our conclusion is that "deepness" is relative to the phenomena of inter-
est, i.e. whether the representation describes the properties and relationships that
mediate interactions among the phenomena and whether the reasoning processes
take this information into account.

I
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Some Causal Models are Deeper than Others

Tom Bylander I
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Abstract 5
The effort within Al to improve the robustness of expert systems has led to

increasing interest in -'deep" reasoning, which is representing and reasoning about
the knowledge that underlies the compiled knowledge of expert systems. One view I
is that deep reasoning is the same as causal reasoning. Our aim in this paper is
to show that this view is naive, specifically that certain kinds of causal models
omit information that is crucial to understanding the causality within a physical
situation. Our conclusion is that "deepness" is relative to the phenomena of inter-
est, i.e. whether the representation describes the properties and relationships that
mediate interactions among the phenomena and whether the reasoning processes
take this information into account.

1. Introduction

Most expert systems depend upon compiled representations and reasoning
processes. Their representations associate data with conclusions, and their reason- I
ing processes use these associations, but they do not take into account the reasons
why the data and conclusions are related. Without this extra knowledge, expert

systems will be limited in what explanations they can provide and in reasoning
about their own limitations.

Within Al, there has been increasing interest in deep reasoning, i.e. represent-
ing and reasoning about these "reasons." A number of suggestions have been I
made that identify deep reasoning with causal reasoning. Hart suggests that deep
reasoning involves commonsense ideas about causality as well as mathematical
modeling (Hart, 1982). Michie suggests that the fundamental laws of the domain
constitute deep reasoning (Michie, 1982). A number of programs could be said to
perform deep reasoning based on these criteria. Instead of summarizing and com- -
paring these programs, which would probably be confusing rather than enlightening
given the plethora of domains and reasoning methods, my strategy is to take one
program and compare an explanation of its domain by the program's builders with
an explanation produced by the program. The goal of the comparison is to gain
insight on the relationship between "causal reasoning" and "deep reasoning."

This research is supported by Air Force Office of Scientific Research grant AFOSR-82-0255,
and grant NIHR GOAOE 82048-02 from the National Institute of Handicapped Research. 3

This is not a claim that expert sy~ems cannot perform interesting problem solving.
Chandrasekaran and Mittal (Chandrasekaran, 1983) have pointed out how an expert system, for a
particular reasoning situation, can fully incorporate the appropriate deep knowledge. However, it
would not incorporate the deep knowledge for those situations that were not considered in its design.
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2. Two Causal Explanations

These two explanations are taken from a paper by Patil, Szolovits, and
Schwartz, which describes a program called ABEL (Patil, 1981), one the first
programs to perform interesting causal reasoning. The first explanation is by the
authors, the second by the ABEL program. The reader is forewarned that these
explanations, although they concern the same domain, do not involve exactly the
same phenomena.

Explanation jQI. "'... let us consider the electrolyte and acid-base dis-
turbances that occur with diarrhea, which is the excessive loss of lower
gastrointestinal fluid (lower GI loss). The composition of the lower
gastrointestinal fluid and plasma fluid are as follows. In comparison with
plasma fluid, the lower GI fluid is rich in bicarbonate (HCO 3) and potas-
sium (K) and is deficient in sodium (Na) and chloride (Cl)... The loss of
lower GI fluid would result in the loss of corresponding quantities of its
constituents (in proportion to the total quantity of fluid loss)... Therefore,
an excessive loss of lower GI fluid without proper replacement of fluid and
electrolytes would result in a net reduction in the total quantity of fluid in
the extracellular compartment (hypovolemia). Because the concentration of
K and HCO 3 in lower GI fluid is higher than that in plasma fluid, there
is a corresponding reduction in the concentration of K (hypokalemia) and
HC0 3 (hypobicarbonatemia) in the extracellular fluid. Finally, as the con-
centration of Cl and Na in the low GI fluid is lower than that in
plasma fluid, there is an increase in the concentration of Cl
(hyperchloremia) and Na (hypernatremia) in the extracellular fluid." (Patil,
1981 - p. 841)

Explanation #2. "Moderate lower GI loss, reduced renal HCO 3
threshold, and normal HCO 3 buffer binding jointly cause no HCO 3 change.
The no HCO 3 change causes low extracellular fluid HCO3, which causes
low serum HCO 3. The low serum HCO 3 and low serum pC0 2 jointly
cause low serum pH. The low serum pH causes K shift out of cells and
causes increased respiration rate. The increased respiration rate causes low
serum pCC 2, which causes normal HCO 3 buffer binding. The low serum
pCO 2 also causes reduced renal HCO.3 threshold and increased respiration
rate causes increased ventilation. The lower GI loss and K shift out of
cells jointly cause K loss. The K loss causes low extracellular fluid K,
which causes low serum K." (Patil, 1981 - p. 898)

Both of these explanations have a causal story to tell, but in different ways
and in different terms. The crucial difference is that the first quote makes use of
our physical understanding about how the world works. It evokes a physical
representation of the body and appeals to our understanding of how physical
phenomena behave. The second quote is a different type of a physical explanation.
While the second quote causally relates physical states, it does not express any
physical relationships that let us understand the causal assertions in terms of some
physical principle. Assertions like "low serum pH causes K shift out of cells" im-
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body

extracellular fluid

plasma fluid

relatively low
concentrations
of K and HCO 3

GI fluid

relatively high
concentrations
of K and HCO 3

Figure L: Representation of Patil, Szolovits, and Schwartz's Explanation

plicitly depend on the structure of the human body and how certain parts of the
body behave. With respect to physical phenomena, the first explanation is deep and
the second explanation is compiled.

3. An Analysis of the First Explanation

The first quote builds up the representation displayed in figure 1. (Na and CI
have been omitted for the purposes of this discussion.) The body can be thought
of as having a container of extracellular fluid. The extracellular fluid compartment
can be decomposed into a plasma fluid compartment and lower GI fluid compart-
ment. Lower GI fluid has certain concentrations of HCO 3 and K, which happen to
be greater than in plasma fluid. When the amount of lower GI fluid decreases (as
happens in diarrhea), a corresponding amount of HCO 3 and K also decrease. It
can be inferred that the total concentration of HCO 3 and K in extracellular fluid
also decreases.

This representation lists the parts of the situation: fluid compartments, fluids,
HCO 3, and K. It incorporates structural relationships between the parts, e.g., con-
tainer, composed-of, and concentration, as well as behavioral information about
them, e.g., fluid is something that can be contained, and can move. Also a fluid
can be composed of other things, including HCO 3 and K in this case. The physi-
cal principle that this explanation appeals to is that when a certain amount of

I
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fluid moves, the fluid also takes what it is composed of along with it. With a lit-
tle bit of qualitative (or quantitative) analysis about concentrations, it is not hard5to determine how certain concentrations will increase or decrease depending on how
fluid moves.

In general, reasoning about physical situations faces two problems: (1) changes
in physical structure can change the overall behavior and properties of a situation.
and (2) changes in a part's behavior can change the overall behavior arid properties
of a situation. So to perform deep reasoning about physical phenomena. represen-
tations need to express the structure and behavior of physical situatiorn and their
constituents, and reasoning processes need to be able to take this information into
account .Much of the work in naive physics is aimed at reasoning abouit phvsical
information such as behavioral properties of components, connections between com-
ponents. and containment of substances (Hayes, 1985, deKleer, 1984. Forbus, 1984,
Bylander, 1985). There has also been research on reasoning about how shape af-
fects behavior (Forbus, 1983, Stanfill, 1983, Shoham, 1985).

'3 4. An Analysis of the Second Explanation

The second quote is a description of the causal network illustrated in figure 2.
The physical relationships that supports the causal network is not present in this
explanation. For example, one part of the causal network is that loss of GI fluid
contributes to low concentration of K in the extracellular fluid. However, this
representation does not have structural and behavioral information such as
"Extracellular fluid can be decomposed into plasma fluid and GI fluid."

Why is this additional information important? If the program only has causal3 networks such as in figure 2, the omitted physical information becomes a large set
of assumptions that are implicitly encoded into the causal network. The result is
that the robustness of the causal network depends on the likelihood that these3physical assumptions are true.

For example, suppose that GI fluid in a particular person had a lower con-
centration of K than plasma fluid, then the causal network would be wrong. Since
the causal network does not express where GI fluid sits in the body's structure and
that GI fluid normally has a greater concentration of K than plasma fluid, the pos-
sibility that this information is wrong cannot be hypothesized and cannot be
reasoned about. These are the same characteristics of compiled reasoning that
typical expert systems have. Causal networks represent more information about as-
sociations between data and conclusions, but because they do not represent physical
relationships, causal networks and their reasoning processes are also compiled.*

Each causal link in ABEL has a "slot" for stating its assumptions. It is unclear what kind of
information was being represented by the assumptions, and what reasoning processes could be per-

formed on them. It is conceivable that a causal network could point to the information that sup-
ports it, but this additional information would be something different than causal networks.

I
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moderate lower
GI loss z no HCO3 change I

low extracellular
fluid HC0 3

I reduced renal normal HCO 3low serum HCO3  HCO 3 threshold buffer binding

low serum pH

K loss K shift out of cells low serum pCO2

low extracellular increased
fluid K respiration rate

lowserumK increased
ventilation 3

Figure 2: Representation of ABEL's Explanation

5. Some Misconceptions about Deep Reasoning

It might be claimed that representations like figure 1 are no better off than
those like figure 2 because the information in figure 1 is a very qualitative I
representation, while figure 2 could relate physical states in more detail. This leads
to the misconception that reasoning at a greater level of detail is "deeper" reason-
ing. This simply misses the point. Any representation worth considering can
describe things at various levels of detail, but without representing physical
relationships, certain kinds of reasoning processes can never be applied, no matter
the level of detail.

Another misconception is that quantitative reasoning, such as solving or
simulating differential equations, is deeper than qualitative reasoning. This is a
misconception about the role of quantitative reasoning in reasoning about the
world. A quantitative model is used when a situation can be mapped into it. and

the results of applying the quantitative process can be interpreted in terms of the I
situation. To do this, there needs to be an understanding of what the situation is
like, when the mapping is applicable, how to apply the mapping, and how to inter-
pret the results. Each of these steps involve represer ation and reasoning
(presumably qualitative) over and above the quantitative model. Quantitative
reasoning supplements other reasoning processes; it does not substitute for them.

, I I I I iI I
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6. The General Nature of Deep Reasoning

On the basis of these examples, I propose the following definition of "deep":

A representation is "deep" with respect to a class of phenomena iff
the representation describes the properties and relationships by which the
phenomena interact.

A reasoning strategy is *deep" with respect to a class of phenomena
iff the strategy reasons based on how the phenomena interact.

Relative to a certain class of phenomena, deep representations describe the

properties and relationships that leads to interaction among these phenomena. and
deep reasoning processes operate on this information. Because physical phenomena

interact on the basis of physical structure and behavior, there need to be represen-

tational primitives whose meaning are structural and behavioral, and reasoning

processes that can take this information into account.
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I Abstract

3 Given a collection of components connected in a certain way, how can the behavioral

descriptions of the components be composed into a behavioral description of the collection
as a whole? This question points out a need to seek alternatives to qualitative simulation.3which has been the most common approach to generate device behavior from component

descriptions. We answer this question by proposing a reasoning process called consolidation
in which (1) the behavior of components are represented using a small number of primitive
types of behaviors and (2) behavior is inferred using rules of composition that describe how

one type of behavior can arise from a structural combination of other types of behavior

This paper discusses the basic consolidation process, reasoning processes that underlie con-

solidation, and the limitations of our current approach.
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Using Consolidation for Reasoning about Devices

Tom Bylander

1. Introduction

3 Naive Physics is the subject of how the physical world can be understood by naive in-

telligent agents, who are naive because they are not students of Physics, but are intelligent

because they can still reason effectively about the physical world. Because people are

prime examples of such agents. and because computers have the potential for powerful

reasoning, research on Naive Physics attempts to answer the questions: How do people

reason about physical phenomena? How can computers be endowed with similar facilities?

Artificial Intelligence research on Naive Physics concentrates on the second question, and by

doing so, also seeks to achieve significant insight on the first.

In this paper, we address the following problem: Given the structure of a device, how

can the behavioral descriptions of its components be composed into a behavioral description

of the device as a whole? We propose a representation of behavior and a reasoning

process, called consolidation, that uses the representation to draw conclusions about the be-

havior of subsystems of the device as well as its overall behavior. To better understand

what consolidation is good for, we shall begin by contrasting consolidation with the more

familiar process of qualitative simulation.

1.1. Qualitative Simulation

Much of the research effort on Naive Physics has been devoted to qualitative simula-

tion, which is also a process for drawing conclusions about the behavior of

devices 8. 14, 19. 37, 201. The behavior of the device's parts is primarily represented via

constraints on "quantities," t which are qualitatively-specified real-valued variables and

t in Kuipers's proposal, the constraints apply to the whole device, not to individual components.



derivatives. i.e.. the value of a quan:r.y is represented as being in a reai nzer'.a .r 1, r

point between two real intervals. The simulation process uses some form of constraint

satisfaction to determine the possible values of the quantities during the --current" period of

time and differential perturbation to update quantities for the next time period. The result

of qualitative simulation is a temporal sequence of events that the device goes through. In

general, the qualitative nature of the representation leads to ambiguities. so that qualitative

simulation might only determine what sequences of events are possible. not which one ac-

tually occurs. 7

There is a significant difference between the behavior input to qualitative simulation

and the behavior that is output. The initial behavioral description of the device does not

specify sequences of events, but expresses a collection of arithmetic relationships between

quantities." The problem is that the relationships which apply to a specific part severely

underconstrain what sequences of events the part can go through. Instead. a reasoning

process (qualitative simulation) is needed to determine the sequence of events based on the

behavioral descriptions of all the parts. To distinguish these two types of behavior, we will

call the behavior input by qualitative simulation potential behavior and the behavior that is

output actual behatior. The idea underlying this distinction is that actual behavior ex-

presses what events happen in what order, while potential behavior expresses behavioral

characteristics independent of initial conditions and outside interactions. For example, the

actual behavior of a component is the temporal sequence of values of its quantities in a

particular situation, while its potential behavior is its behavioral characteristics independent

of the device it is part of, or the components it is connected to, cf. de Kleer and Brown's

no-function-in-structure principle 8 . Note that the concepts of actual and potential be-

havior are just as applicable to devices and their subsystems as to their components.

2 De Kleer and Brown call these relationships "laws" and Forbus calls them "processes."
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3 This distinction is important because qualitative simulation needs two .,ther Klns ,f

information about a device in addition to the potential behavior of its parts: the initial

state of the device and the interactions between the device and the outside world. With-

out this information, the value of each quantity that can be affected becomes indetermin-

I able. This is because devices, in general. can have many initial states. For example. each

container within a device could be empty. full, or somewhere inbetween. Also. the worid

can interact with the device in many ways. Enumeration of all conceivable outside inter-

3actions is not very practical since the number. kind. and order of interactions can vary

greatly

I IConsequently. qualitative simulation is restricted to problems of a particular type.

3 namely those of the form:

input: structure of the device -
potential behavior of its parts

initial state of the device -

interactions with the outside world

Soutput: actual behavior of the device

The point is not that qualitative simulation is not useful. Obviously, prediction of actual

I behavior is a useful and necessary activity. However, prediction by qualitative simulation

is difficult if the right information is not available, and in addition, actual behavior might

not be the only output that is useful. This raises the question of whether other forms of

3 reasoning can make other kinds of useful conclusions with less information.

1 1.2. Consolidation

In this paper, we propose a reasoning process called consolidation for inferring the

I potential behavior of a device from the structure of the device and the potential behavior

of its parts. We present a representational system for describing the structure of simple

I devices and the potential behavior of their parts. and a method of symbolic reasoning that

processes these descriptions to infer the potential behavior of the device.

I
U
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Why infer potential behavior' It would appear that if the parts* pcten:-al bena :ir

known, then the combination of their behavioral descriptions serves as a description of the

potential behavior of the device. However. this description of potential behavior is unin-

teresting because, presumably, a device is constructed to have a potential behavior that

could not be achieved by any of its individual parts. Since the potential behavior of a

device is not equivalent to the potential behavior of its parts, some reasoning is called for

to determine the device's potential behavior. Also, a description of the device's potential

behavior is likely to be more concise and efficient for further reasoning about the device.

If a black-box description of the device is all that is needed, then a behavioral description

of the device can substitute for the behavioral descriptions of all its parts.

The problem of inferring the potential behavior of devices is only one of many Naive

Physics problexns. Clearly, other kinds of information are useful to derive, e.g. actual be-

havior. intended purpose, designs, malfunctions, etc. Also, there is the problem of deter-

mir~ing information about the parts given information about the device. This raises the

question of how an intelligent agent can coordinate its Naive Physics problem solving ac-

tivities. Most of these issues are well beyond the scope of this paper Although this paper

is limited in scope, we believe that studying specific Naive Physics pr..Iems, specifying

general reasoning processm to solve those problems, and determining how to coordinate dif-

ferent reasoning processes will be a fruitful approach to. understanding Naive Physics.

A program based on our consolidation framework has been implemented and works on

a number of examples, two of which are presented in this paper. Here are some examples

of reasoning (translated by us into English) that this program can achieve:

e Two batteries in series behave like a battery with a larger voltage.

3The significance of this answer is that the program derives a behavioral description that is
similar to a battery. The program does not actually determine that this description is like a bat-
tery.



D Two streams of water separated by a heat conductor behave like i hear. P-

changer.

4 A gear mechanism allows energy to be transferred from one shaft to another.

* The chambers and valves of the heart make it behave like a pump.

Many limitations and loose ends remain in the framework we propose. For instance.

some substantial changes in the representation appear to be necessary in order to fully en-

compass the domain of devices. To the extent that this proposal is on the right track.

these difficulties represent the next set of questions that future research needs to resolve.

Note: For the remainder of this paper, we use the following conventions to simplify

the discussion. "Behavior" is generally used to mean "potential behavior." The reader

will be warned whenever "behavior" is being used in its generic sense. "Behavioral

description" is used to mean "description of potential behavior." If X is a physical object

or a class of physical objects, the phrase "description of X" means "description of X's

potential behavior."

1.3. Combining Components

A major limitation on any symbolic reasoner is that the behavior of a device cannot

be derived directly from its structure and the behavior of its parts. Intermediate represen-

tations need to be constructed and processed. At any given time, some part or substruc-

ture of the device is being analyzed, and the rest of the device is temporarily ignored. 4

Following Simon's claim that systems are constructed and understood as hierarchical 31, it

should be possible to understand a device as a hierarchical system of subdevices. This sug-

gests a simple divide-and-conquer strategy: first infer the behavioral descriptions of sub-

devices, and then to synthesize these into the behavioral description of the whole device.

41t would be more accurate to say "For any given computing process, some part or substructure
... " With enough processes running in parallel, every part of a device might be analyzed at the
same time. However, a method for analyzing substructures of devices is still necessary.



Figure 1 illustrates how we apply tnmis strategy. and also itroducet some rmin.gi 1

A model of a device is displayed in the upper left corner of the figure The device has

[our components. named A. B. C, and D Connections between components are indicated by

the solid lines between the circles. Connections are not a special kind of component. but

serve to represent the places where components interact and are in contact with other com-

ponents. Objects like pipes and wires, then. are properly treated as components rather

than connections. Open connections represent potential connections of the device. re..

where it interacts with the outside world.

The basic processing sequence of consolidation is to select a substructure consisting of

two components and to produce a behavioral description of the substructure or cornposite

compo'ent. In the figure, A and B are selected for consolidation, and a behavioral descrip-

t,on of the composite component AB is produced (middle right of the figure). Successive

applications of this sequence results in an analysis of the composite component ABC (a

combination of. AB and C), and finally the whole device.

1.4. Representing Behavior to Facilitate Composition of Behavior

It is desirable to use a simple and straightforward mechanism for inferring the be-

havioral description of a composite component. As previously mentioned, qualitative

simulation proposals represent behavior via constraints on quantities. It would appear,

then, that consolidation would need to infer the constraints and quantities of composite

components from the constraints and quantities of the subcomponents. The task is not as

simple as concatenating all the constraints of the subcomponents. Instead, there is a need

to directly specify how the composite component interacts with other objects. Con-

sequently, an analysis of constraints would be required, so that all the constraints that

apply to the subcomponents are reduced to a more perspicuous set of constraints that ex-

presses the composite component's behavior. This is an open and difficult issue. For ex-

ample. equation operations like substitution do not apply to the confluences of de Kleer

and Brown, so that inferences like the following are incorrect.
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Figure 1: An Outline Ir the Divide-and-Conquer Stracegy



~I Z X YZ = 3
If Y is negative and Z is positive. W and X can have different signs withovc an cu)n-

tradiction in the confluence formalism, therefore W = X does not follow Difficulties like

these would make it hard to do consolidation using constraints. 3
Instead. we propose to represent behavior based on a small number of types of

behavior" These types of behavior support rules of composition that describe how one

type of behavior can arise from a structural combination of other types of behavior Ne

cannot demonstrate that this proposal for deriving behavior is the "simplest mechanism'

that can ever be developed. However. it strongly suggests that beha-ioral descr,,ptions can 3
be inferred by straightforwardly representing and composing behavior

The following observations illustrate how composition of behavior is possible

" Two pipes connected end to end behave like a longer pipe. 3
" A water pump connected end to end with a pipe behaves like a water pump.

* Pumping from one water tank to another through a pipe moves water from the 3
first tank to the second.

It is not necessary to restrict these statements to water and components acting on water I
For other types of substances, the equivalents of pipes, water pumps, and tanks can be

substituted in these statements, and they still remain essentially correct.

The strategy this suggests is to represent general types of actions on substances, and 3
to develop a set of composition rules that describe how these actions can combine to give

rise to aggregate actions. The types of actions (called types of behavior) and rules of com-

position (called causal patterns) are two of the important contributions of this research. 3
The types of behavior and causal patterns generalize the above examples in the following

way:

e The serLal allow causal pattern states that one allow behavior (one type of be-

havior is desigrated "alow") in series with annther allow behavior results in I
I
3



3 another allow behavior over the combination of their paths A pipe ha: an

allow water behavior.

I * The propagate pump causal pattern states that a pump behavior in series with

an allow behavior results in a pump behavior over the combination of their

paths. A water pump has a pump water behavior.

3 * The pump move causal pattern states that a pump behavior and an allo', be-

havior over the same path from one container to another results in a move be-

* havior over that path.

The names of behavior types and causal patterns are italicized to distinguish technical

m usage from conventional English. At the risk of being ambiguous, an instance of a type of

3 1behavior is often referred to as "a behavior.'"

The types of behavior and the causal patterns allow for a "simple and straightforward

mechanism" by reducing a large part of the derivation of behavior problem to finding

structural combinations of behaviors.

1.5. The Frame'vork of Consolidation

U The component composition strategy and the behavior composition strategy can be

3 combined in the following way. The behavioral description of each component consists of

the behaviors and the structural elements that are relevant to how it interacts with other

3components. The desired result is a behavioral description of the device that consists of

the behaviors and structural elements that are relevant to how it interacts with the outside

world. Note that a component (or composite component or device) can have many be-

haviors and many structural elements (many connections and containers). The component

composition strategy can then be used to control the inference of behaviors by restricting

3 the context (the composite component) in which inference can take place.

Besides these strategies, a number of other reasoning processes need to be invoked.

I Figure 2 illustrates the overall processing framework. The boxes in the figures represent in-

U

I
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behaviors of dtiso

Figure 2: An Outline of the Consolidation Framework
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formation that is selected or inferred and the ellipses represent processes. The inpt 'o

consolidation is the structure of the device and the behavior of the components. The

,-Component and Device Behavior" box represents the initial information about the

components' behavior plus any that is inferred. A planning process selects two components

(either or both can be composite components) based on the structure of the device and

what composite components have been processed so far. The causal patterns are applied to

these components to determine what the behaviors of the composite component are. Fur-

ther details about each inferred behavior, such as the values of its attributes, are deter-

mined by using knowledge associated with the substance being acted upon and by keeping

track of any dependency relationships to other behaviors. Of the behaviors that are in-

ferred and the original behaviors of the two components. only those that dpscribe the com-

posite component's black-box behavior (called its "external description") are needed for fur-

ther consolidation. At this point, the behavioral description of the composite component is

completed, and what is known about component and device behavior is updatkit accord-

ingly.

51 Our research has analyzed the representations and the strategies used by each of the

processes displayed in figure 2. All the representations and processes have been imple-

mented.

1.6. Limitations of Consolidation

It is important to distinguish two types of limitations: those that apply to any con-

solidation process and those that are due to weaknesses and omissions in our particular

framework. This section primarily explains limitations of the first kind. The main limita-

tion. of course, is that consolidation works on only one kind of Naive Physics

problem -deriving the potential behavior of a device. It does not, for example, determine

the actual behavior of a device, nor does it design devices that perform some behavior.



Consolidation is limited by the avalablity and capaoilitv of other reascning pr,;ce_;. e_

The preciseness and succinctness of a behavioral description depends. in part. on being able

to reason about the attributes of behaviors (such as amounts and rates). especially about

relationships between attributes of different behaviors. This includes keeping track of or-

dinal relationships and reasoning about feedback.

Another limitation of consolidation is that all the behaviors of components and sub-

stances must be known. However, the precise details about any behavior are not required.

For example, if a component has a pump water behavior, but its behavioral description

does not mention it. then consolidation will likely make bad inferences. e.g.. a move water

behavior and the effects of the move might not be inferred. However. all the details about

the pump water behavior are not required. A lack of detail might result in vague conclu-

sions, but not wrong ones.

Another general problem with consolidation is that combinatorial problems can arise.

The behavioral description of a composite component might have more behaviors and more

structural elements than either of the subcomponents. Our framework provides for some

summarization, but does not prevent a number of combinatorial problems. It is unclear

whether additional summarization processes can handle all the possibilities.

The specific consolidation framework described in this paper has several weaknesses

that are not necessarily inherent to all consolidation problem solvers. Our framework does

not provide for spatial reasoning about shape and orientation, for certain aspects of reason-

ing about substances such as mixtures, for certain kinds of summarization and abstraction

of behavioral descriptions, for actions at a distance such as gravity, and for focusing control

on the physical phenomena of interest. These weaknesses are mentioned in passing in the

sections immediately following this one, with an extended discussion of them in a later sec-

tion.

,= n.,, ,,n,,,=m mun mnu nt u I II
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1.7. Research Related to Consolidation

1.7.1. Primitives of the Physical World

In research on natural language understanding, both Schank 27. 28 and Wilks 35. 36

have proposed "primitive semantic units" (Wilks's phrase) for representing physical actions

and physical objects. Many of their primitives have meanings similar to our types of be-

havior. For example the PROPEL action primitive proposed by Schank. which means

-apply a force to," is similar to the pump type of behavior: the CONT primitive proposed

by Wilks, which means "being a container," is similar to our containment structural primi-

tive.

Clearly then, the types of behavior and the other representational primitives in our

framework are not new discoveries. The key advance is that it includes a process for infer-

ring the behavioral description of composite components and devices. Both Schank and

Wilks are, of course. concerned with making inferences, but they have concentrated on the

representation and processing of natural language rather than of physical situations.

Fink, Lusth, and Duran 11, 12, 22' have recently developed a set of primitives for

representing the physical functions of a device's components and for simulating the device:

"transformers" convert substances into other substances; "regulators" control other com-

ponents: "reservoirs" store substances; "conduits" transport substances: and "joints" provide

connections between components. Their primitives can be analyzed as standard combina-

tions of the structural relations and types of behavior in our proposal. For example,

"reservoir" is a combination of a container with an allow and an ezpel behavior. The dis-

advantage of their proposal is in describing the behavior of "non-standard" components and

the device as a whole.
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1.7.2. Hayes's PLan for Understanding Naive Physics

Much of the interest in Naive Physics is due to Haves. who has urged the Al com-

munity to study Naive Physics and has outlined a research plan for studying Naive

Physics 16. 17, 18 . The heart of Hayes's proposal is "'the construction of a formalization

of a sizabt. portion of commonsense knowledge about the everyday physical world." The

first part of the plan is to represent "our own intuitive concepts" about the physical world

so that the representation supports the inferences that people can make about the physical

world. Constructing a program that can perform this reasoning is to be postponed until

the formalization can provide the desired inferential capability.

Our contribution to the study of Naive Physics is not quite in the way that Hayes has

in mind. Instead of concentrating solely on representation, we also ask the questions:

What strategies can a reasoning process use to efficiently solve the problem? How can a

representation support these strategies? Instead of assuming an idealized reasoning process

(being able to prove or disprove anything), we also consider how the reasoning process can

be done using a reasonable amount of resources. Following this strategy compels us to find

representations that are useful both for describing the physical world and for reasoning ef-

fectively about it. Our desire for such use-specific representations and reasoning processes

follows the spirit of recent research in knowledge-based reasoning 13, 41

1.7.3. Causal Link Representations

Rieger and Grinberg propose a representation of physical situations that is based on

describing the causal interactions (causal links) between the events that occur in a physical

situation '261. This representation is used to perform a simulation of the device. The

primary components of the representation are 10 types of causal links and 4 types of

events. For example, a "continuous causal" link can be used to assert that an action (a

type of event) causes a state (another type of event) to occur as long as the action and

other specified conditions are in effect. With a "one-shot causal" link, the action and con-

ditions are only required momentarily.
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The iimitation of causal link representations is in reasoning about changes in -tri.'. , -

and behavior. The causal links aisume that the device will maintain its structure., and

3 that the components will maintain their behavior. However. if any change of these types

occurs, the causal links are no longer valid, and there is no way to infer the devices be-

I havior from the new structure and behavior. Although Rieger and Grinbergs causal link

3 representation might efficiently represent the causal associations between physical events, it

does not represent how the physical world constrains the causal associations These

3remarks also apply to other causal link representations 34, 23, 25, 21

L.7.4. Reasoning about Subsystems

De Kleer has proposed a method that incorporates qualitative simulation and reasoning

about subsystems of the device. His method processes the output of a qualitative simula-

tion of a device to determine the teleology (purposeful behavior) of the device and to iden-

3 tify subsystems of the device and their teleology *6, 9. However, the dependence on

qualitative simulation leads to several difficulties. One is the amount of effort, a complete

qualitative simulation, that is needed to determine the behavior of a subsystem. Another

difficulty is that a qualitative simulation is biased by assumptions about the initial state of

the device and outside interactions with the device. A third difficulty is the ambiguity of

3 the simulation output. Because each possible temporal sequence of events produced by a

qualitative simulation has a different teleological analysis, de Kleer's method must choose

3 which sequence has the best teleology. Since the other sequences are still possible, the

teleology, at best, states only how the device and its subsystems should behave, not how

U they truly behave.

3 Other research has applied constraint satisfaction techniques to subsystems independent

of qualitative simulation. In particular, the work of Sussman and Steele 33! shares the no-

3 tion of reducing complexity by reasoning about a group of components as a single abstract

component, which is embodied in their notion of 'slices." A slice is a special kind of con-

straint that expresses part of the combined behavior of a group of components. By apply-

U
1



ing slices it is possible to decompose a device in different wa .s and -c deriv%, ;e.s f .,.,n- I

straints that are easier to reason about. However. their proposal is unsuitable for general

consolidation because slices are conditioned on groups of components rather than the :on-

straints themselves. Thus. a slice is not a general rule about behavior, but about a par- 3
ticular configuration of components.

1.8. Outline of the Rest of the Paper

The following section describes the basic structures of consolidation: the types of be- 3
havior and the causal patterns. Section 3 describes other representational structures and

processes that are needed to more fully describe behavior. This includes attributes of be- 3
haviors and dependency relationships between behaviors. This section also discusses

simplifying behavioral descriptions for further consolidation and planning what components

should be consolidated. En Section 4, we present a more complicated example of using con- 3
solidation by showing how it can be applied to a simplified model of the human cardiovas-

cular system. Fin~ally, we discuss the shortcomings of our consolidation framework and sug- 3
gest how they can be overcome. I
2. Types of Behavior

In this section, we explain how to represent potential behavior using a small number of 3
types of behavior, and how interactions between instances of types of behavior (referred to

as "behaviors") can be described by rules of composition. A type of behavior is a type of 3
action on a substance at some location or on some path. Naturally then, there must be a

language for describing structure. The rules of composition. called causal patterns. are

based on the types of behavior and the language of structure. The causal patterns describe 3
how one behavior can arise from a structural combination of other behaviors. Our discus-

sion begins with a simple language for describing the structure of devices, and proceeds to 3
the types of behavior and the causal patterns.

3
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32.1. Elements of Devices

As a first approximation. the parts of a device t in be separated into two clases:

I Components. These form the topology of the device. Wires. switches. pumps.

and tanks are examples of components. Our use of 'component" is quite

general Empty and air-filled spaces are sometimes created as components since

3 Ithe behavior of a device might depend on the properties of some empty space

within it.

3 Substances. Components interact with other components. The interaction is not

just about components. but about the 'stuff" or substances that move within

I and between components and affect their behavior We apply the notion of sub-

stance to a wide variety of physical phenomena. Throughout this paper. the

word "substance" is used to refer to any physical phenomena that can be

3 thought of as moving from one place to another. This is not intended to imply

that Naive Physics reasoners are required to think of heat, for example, as being

3material, but only that heat is a type of physical thing that moves.

3A device that is used to create light might have the following components: a light

bulb, a switch, a battery, and wires. The kinds of substances that these components act

3 upon are electricity, light, and the signals that make the switch turn on and off.5

3 This dichotomy between components and substances makes it difficult to represent com-

ponents that also move, such as gears, shafts, and wheels. For the moment, we ignore this

3problem, and assume that the component, substance distinction can be strictly enforced.

1

3"iSignals are not strictly physical phenomena, but an abstraction of the physical level. We use

signals as a convenience when the actual substance that carries the message is not important to the

analysis.

1



2.2. The Structure of Devices 3
How can a component interact with other components and with substances' One part

, f the answer to this question is that a component has structusre. On its exterior. it has

places that are used to connect it to other components On its interior. it has places that 3
hold or contain substances. This suggests two types of structural relationships:

" Connection between components. A connection signifies that one component is 3
attached to another component or is otherwise in meaningful spatial contact

with it. An example of -meaningful spatial contact" is the relationship of the U
surface of a light bulb with the space around it. which in turn. might be in

contact with something that interacts with light, e.g.. a photoelectric cell or a

prism. We will assume that each component has a fixed number of available 3
connections to other components. The notion of connection proposed by de

Kleer and Brown '81 is similar to this one. The primary difference is that they 3
use connections to represent ideal conduits, while we prefer to use connections as

structural relationships. However, our framework does not hinge on this dif- 3
ference. 3

" Containment of substances. Both components and substances might contain sub-

stances. Containers represent the places inside components and substances that 3
substances can move from, move into, and be at rest. These places might not

have significant capacity, so the phrase -'X has a container for Y" only implies I
that there is some place inside X where Y can be located, not that X has a

large capacity for Y. A pipe, for example, can contain water water can contain

heat and dissolved substances. We will assume that each container holds a 3
fixed kind of substance. The importance of the notion of containment for Naive

Physics theories has been pointed out by Hayes 18, and Forbus 14. 3
The connections of a light bulb device are illustrated in figure 3. The positive ter- 3

minal of the battery is connected to endi of the switch, end2 of the switch is connected to U
3
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endi of the light bulb. and end2 of the light bulb ,s connected to the "a-ter _IeV'.-P

terminal. There are two open connections. which indicate where this device interacts with

its external environment. The switch's gate connection is where an -'on' or an 'off- sig-

nal can be received. The surface of the light bulb is where light radiates. Strictly speak-

I ing. the wires between these components should also be represented: however, to simplify

the discussion, the wires have been omitted.

1
term Battery + em n 1 SwtheLd2end 1 Light Bulben2

gate surface

Figure 3: Connections in the Light Bulb DeviceI
electicity

3Battery Switch Light Bulb

elect elct eectrici-
electricity signal electricity light

signal light

l Figure 4: Substances in the Light Bulb Device

l Figure 4 shows the substances that can be contained by the components of the light

bulb device, as well as the substances that can move through the connections. All the

components contain electricity,6 and there are electrical connections between each cor-

ponents, The switch has a signal container (where it receives an "on" or "'ofF" signal) and

a signal connection. The light bulb has a light container and connection.

36A switch "contains" electricity because electricity can move inside a switch, not because the

switch has a capacity for electricity.U
I



Each connection. open connection and container is treated as a location or piace .n

the device. A "path" is a network of two or more places with two endpoints. A circuit

can be described by using the same place for both endpoints The behaviors of components

describe the primitive paths from which other reasonable paths can be formed In the light

bulb device, there appears to be a circular path of electrical connections and containers

through which electricity can move. At this point, however, no commitment is made about

whether electricity can move or will move around the circuit. For example when the

switch is open. no electricity can flow through the switch. On the other hand. the struc-

ture does limit what paths are possible. Light. in this model, cannot move from or to the

switch since the switch has no connection or container for light.

2.3. Types of Behavior

When a part of a device contains a substance, the part has the opportunity to act

upon the substance, e.g., by restricting its movement, by pushing or pulling it, or by trans-

forming it to another kind of substance. The central claim of this proposal is that a small

set of primitive schemas, the types of behavior, can be used to describe these actions and

reason about their interaction.

2.3.1. Allow

The simplest type of behavior is allow. An allow7 behavior indicates that a specified

substance is permitted to move on some path, i.e., from one endpoint of the path to the

other. For example, a wire permits electricity to move through it, thus the wire has an

allow electricity behavior.

Allow behaviors come in two subtypes: (1) movement is permitted in either direction.

such as within a wire or pipe, and (2) movement is permitted only in one direction, such

as within a d:ode or heart valve. These are respectively called two-way and one-way allow

7 When the term "allow" is used to refer to the allow type of behavior, it is italicized. The
names of the other types of behavior are treated similarly.
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oehaviors. When the details of an allou in one iirection is iomgificantlv iffer-nt from 'n,

)ther direction, two one-way allow behaviors are used.

~ ".1"2. Expel

3 Expel and pump are two types of behavior that describe influences or forces. i.e.. an

attempt to move a substance. An expel behavior is an attempt to move a substance f:-)m

or to) a container, e.g.. a balloon has an expel air behavior. An expel behavior does not

specify any path of influence, but only a single place from which an influence emanates.U
Two subtypes of expel might be distinguished based on whether the influence is push-

3 mg the substance out of the container or pulling it into the container However, we have

chosen to represent an outward expel by describing the amount of the expel with a positive

3 value, and an inward one with a negative value. Attributes and their values are described

in more detail in the Section 3.

2.3.3. Pump

3 Pump is the other type of influence. A pump behavior is an attempt to move a sub-

stance through some path. A battery has a pump electricity behavior; a heart has a pump

Iblood behavior; a pipe with one end higher than the other also has a pump behavior. 8

There are subtypes of pump based on where the source or sources of the influence are,

i.e.. the places along the path of the pump where there is a "push" or a "pull." It is im-

I portant to distinguish between the following subtypes:

* none of the pump's sources are located at the ends of the path;

o one of the pump's sources is located at one end of the path: and
I some of the pump's sources are located at both ends of the path

Their importance will become clearer when interactions between behaviors are discussed

* below.

3 [t would be better to say that the earth in combination with the pipe causes a pump behavior
over the pipe. This situation, in fact, is a difficult one for this representation, but we shall
postpoaie discussion about it for now.

I
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-2.3.4. Nlove3

Neither the ezpel nor the pump type of behavior makes any commitment about Aeth r- 3
-ome movement is occurring: that is accounted for by the rnov' type -) behavior k f'),,,-

behavior states that a specified substance is moving from one place to another aior a 3
specified path. Move behaviors are constrained by the avaiiability of a substance at one

end of the path and the capability of holding or getting rid of the substance at the other 3
end of the path. Electrical circuits often have move electricity behaviors Light buibs

cause more light behaviors. A heat exchanger has a move heat behavior.

2.,3.5. Create

The above four types of behavior are associated with different aspects of the movement

of substances. The create and destroy types of behavior handle the appearance. dis- 3
appearance. and transformation of substances. A create behavior states that a specified

kind of substance is being created in a container. A light bulb has a create light behavior.

as well as a create heat behavior. A stereo speaker has a create sound behavior. 3
2.3.6. Destroy

A destroy behavior states that a specified kind of substance is being destroyed in a

container. An opaque material has a destroy light behavior. An acoustic insulator has a 3
destroy sound behavior. A transformation of a substance can be represented by a combina-

tion of create and destroy behaviors. 3
An alternative to create and destroy is a single type of behavior in which creation and 3

destruction is specified by a positive or negative rate, respectively This might be more

appropriate for reversible phenomena. 3
2.3.7. Behavioral Modes and Change of Mode Behaviors

When an electrical switch is closed. it has an allow electricity behavior: when the

switch is open, it does not have an allow electricity behavior. We describe the switch as 3
having two behavioral modes, operating regions that are associated with different sets of be- I

, i II I I II I3



hitors An additional type of behavior. called change mode' pecifies a predicae .r. :e.-

haior and the next behavioral mode of the component. For example. the switch has a

change mode behavior from open to closed when it receives an 'on" signal A ,:hange

mode behavior from closed to open would describe the conditions that opens the switch.

2.4. Description of the Light Bulb Device

With this repertoire of behaviors, a behavioral description of the components of the

light bulb device presented in figures 3 and 4 can now be given. Figure 3 displays -he be-

havioral description of the switch, and is an example of the format that we use throughout

the rest of the paper.

Switch

end1 at end2

Connections:
endi of electricity
end2 of electricity
gate of signal

Containers:
elect .'ical of electricity
sensor of signal

Modes:
open
closed

Behaviors:
allow electricity between endi and end2 thru electrical.

mode closed
allow signal from gate to sensor
d,.:troy signal in sensor
change mode to closed

when [move signal from gate to sensor. message on].
mode open

change mode to open
when (move signal from gate to sensor, message off],
mode closed

Figure 5: Behavioral Desc.ription of the Switch



The description is split into four .ectiuns. with the names f sections in. idifacp r.

keywords in italics. The first two sections describe the structure of the switch which is

also pictured above the description. The connections are named endi. end2. and gate

The containers are named electrical and sensor. The names are intended to facilitate

the reader's understanding of the description, but interpreting the representation does not

depend on what names are selected. Each connection and container is specific to a single

substance. The next section lists the behavioral modes of the switch. named open and

closed. The modes section is included in a behavioral description only if there is more

than one behavioral mode.

The final section lists the behaviors of the switch. When it is in the closed mode.

the switch has an allow electricity behavior from one end to the other through its

electrical container. The phrase "between ... and ..." signifies a two-way allow behavior.

The switch also has an allow signal behavior from its signal connection to its signal con-

tainer. -'from ... to ... " signifies a one-way allow behavior. The switch does not remember

all the signals that are sent to it, so it must have a destroy signal behavior. There are

two change mode behaviors. The switch changes its behavioral mode from open to closed

when it receives an on signal. It changes mode from closed to open when it receives an

off signal. message is a parameter associated with signals. Note that there is no section

specifically for substances, but that they are specified in the declarations of connections,

containers, and behaviors.

The behavioral description of the battery is given in figure 6. The battery has two

electricity connections, negative terminal and positive terminal, and one electricity con-

tamer, electrical. It has two behaviors. Its pump electricity behavior goes through the

whole battery, and its source is the electrical container. The battery's allow behavior

also goes through the battery and is a two-way allow.



BaTtery

! negative @positive
neatv electrical

termina terminal

Connections:
negative terminal of electricity
positive terminal of electricity

Containers:
electrical of electricity

Behaviors:
pump electricity from negative terminal to positive terminal

thru electrical. source electrical
allow electricity between negative terminal

and positive terminal thru electrical

Figure 6: Behavioral Description of the Battery

The light bulb (figure 7) has three connections and two containers. [t has an allow

electricity behavior between its two electricity connections and through its one electricity

container, and an allow light behavior between its light connection and container. The

light bulb also has create light, ezpel light, and destroy light behaviors, all of which are lo-

cated in the light source container. The destroy light behavior is needed when the light

that is created cannot, for some reason. move out of the light bulb. Since the light bulb

is unable to store light, the light "disappears." The light is actually transformed into

heat, but to simplify the example (and to avoid representational difficulties we don't want

to discuss here), the light bulb's heat behaviors are omitted.

Finally, figure 8 describes the structure of the light bulb device. The names of the

components are chosen for the benefit of the reader, and not the representation. Non-

electrical connections in the components* descriptions, such as the surface of the light

bulb. are not connected to other components, so they are not mentioned in the description.
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Light Bulb

~I
end 1 elec rical

Ssurface

Connections:
endl of electricity
end2 of electricity

surface of light

Containers:
electrical of electricity

light source of light

Behaviors: I
allow electricity between and end2 thru electrical
allow light between light source and surface

create light in light source U
ezpel light from light source
destroy light in light source 3

Figure 7: Behavioral Description of the Light Bulb

Components: I
battery instance of Battery
switch instance of Switch
light bulb instance of Light Bulb

Connections:
positive terminal of battery and endl of switch

end2 of switch and endl of light bulb
end2 of light bulb and negative terminal of battery

Figure 8: Structural Description of the Light Bulb Device

I

I
I
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2.5. Causal Patterns of Behavior and ;tructure

A causal pattern describes a situation in which a behavior can occur. asserting that if

,'rtain behaviors satisfy a specific structural relationship. rhen nother behavior of a

specified type could be caused. ' )  For example. the propagate pump pattern specifies that a

pump behavior in a serial relationship with an allow behavior can cause another pump be-

havior. e g.. a pump electricity behavior between A and B. and an allow electricity beha'. cr

between B and C can cause a pump behavior between A and C Whether this pump be-

havior actually occurs depends on the physics of the substance and the details of the zub-

behaviors. Below. we describe the causal patterns in general terms. Following subsections

discuss various aspects of the causal patterns and their incorporation into the consolidation

process in more detail.

The following are the causal patterns that we have identified. Besides an English

description of each causal pattern, we also give a logical approximation. In the formulas.

each si is a variable for substances, pi for paths, and Ii for locations (connections or

containers). All variables in an antecedent are universally quantified. The symbol =, in-

dicates that the implication is conditional on other details to be taken into consideration.

9 Serial/parallel allow. An allow behavior can be caused by two serial or

parallel1 O allow behaviors.

allow(sl.p,) ^ allotw(srp,) -N serial(pl,p 2) =2 allow(s, P 3 )
where P3 is the serial combination of p, and P2

allow(s 1 ,pl) A allow(s 1 P2) ,' parallel(pl,p 2) allow(stVp 3 )
where P3 is the parallel combination of p, and P2

For example, two pipes with both ends connected satisfy the parallel allow pat-

9 Currently, the framework does not handle situations in which the behaviors satisfying a pattern
refer to different types of substances, e.g.. oil and water.

10 Roughly, two behaviors are "serial" if they share an endpoint: two behaviors are "parallel" if
they have the same endpoints. A following section describes the meaning of "serial" and 'parallel"
in greater detail.



I
tern. as well as the .ierzal zllow pattern (the pipes form a circ.itr kutht' I
condition of this pattern is that the two allow behaviors must permit movement

in the same direction. Thus one component that permits movement from A to

B and another component that permits movement from C to B. but not from B 3
to C. would not cause an allow behavior from A to C.

" Propagate ezpel. A pump behavior can be caused by an allow behavior and an

,:zpel behavior that is located at an endpoint of the allow.

allow(s,.p,) I expel(s1 .l) *. endpoint(l.p,) = pump(s,.p,)

For example. the expel air behavior of a balloon combines with an allow air be-

havior from the balloon to give rise to a pump air behavior over the same path

as the allow. The source of the pump behavior is the "air container" of the 3
balloon.

" Include expel. A pump behavior can be caused by a pump behavior and an I
expel behavior that is located at an endpoint of the pump.

pump(st,p1 ) N ezpel(sl,l1 ) A endpoint(l1 ,pl) , pump(srPt)

For example, a pump air behavior into a tire (such as using an air pump to 3
pressurize a tire) is opposed by the tire's expel air behavior. The total pump

behavior is a combination of the air pump's and tire's influences. The sources

of the inferred pump behavior are the sources of the pump subbehavior and the

location of the expel behavior. 3
" Propagate pump. A pump behavior can be caused by a pump and an allow be- 3

havior in serial.

pump(sPL) ,' low(st,,P2 ) ,' serial(Pt.P)) pump(s pp.,I

where p3 is the serial combination of p, and p2

For example, the pump electricity behavior of a battery and the allow electricity

behavior of a wire connected to the battery results in a pump electricity be-

havior over the wire and battery. An additional condition is that the common 3
endpoint of the subbehaviors cannot be a source of the pump subbehavior. In 3

I



the bailoon example earlier, the pump behavior whose sour..e is rhe a-b..

cannot be propagated by another allow behavior from the bailoon.

i . Serzal parallel pump. A pump behavior can be caused by two pump beha lors in

serial or parallel.

pump(s1 .P1 ) pump(s1 ,p2 ) serial(p,,p,) 1> Pumks--p3 )

where p3 is the serial combination of p, and p)

pump(sl.pl) pump(s,.p.,) parallel(pl.P 2 ) - pump(sl.p3)

where p, is the parallel combination of p, and p,

m The pump electricity behaviors of twn batteries in serial give rise to a pump

m electricity behavior over both batteries. The sources of the inferred behaviors is

a combination of the sources of the subbehaviors. In the serial case. the shared

endpoint cannot be a source for both pumps. In this and the previous causal

pattern, conditions on the sources of pump behaviors are used to prevent com-

binations of pumps, expels, and allows from reusing the same sources of in-

fluence.

I Pump move. A move behavior can be caused by a pump behavior and an allou,

behavior, both on the same path from one place to another, or both on the

same circuit.

pump(sl,pl) , allow(srpl) .move(sj,p3)

Two containers of water connected by a horizontal pipe (which causes the allow

m behavior) result in movement if there is a pump behavior between the con-

tainers. A wire connecting both ends of a battery is an example of the pump

move causal pattern over a circuit.

3 . Serial.'parallel move. A move behavior can be caused by two serial or parallel

move behaviors.3 more(s1 .P1) move(s 1 ,P2) A serial(pl,p,) move(sl,p 3 )

where p3 is the serial combination of p, and p2

3 move(sl.p 1 ) A\ move(sl,p 2 ) \ parallel(p 1 ,p 2 ) = move(s ,p3 )

,-here P3 is the parallel combination of p1 and p2I
I
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One other causal pattern pertains to zituations in which one Substance -Orrinr in,,her I
substance.

e Carry move. A move behavior of a substance s 1 that can contain a substance

s, (e g, water can contain heat) can cause a move s, behavior along the same

path.

move(s 1 .pl) , contains(s,.s,) . move(s 2 .pl )

For example. when something that contains heat moves from A to B. heat also

moves from A to B. I
We do not claim that this list is complete. Additional patterns might be required to 3
reason about concepts like momentum. in which movement leads to additional influences.

and about forces like gravity, in which one object causes influences at a distance. The ab- 3
sence of any causal patterns that infer expel, create, or destroy behaviors is also notable.

This is because no structural pattern of behaviors will lead to the inference of any of these m

types of behavior at a new location; the capability to ezpel, create, or destroy must have

been inherently there in the first place. I

Suppose that a composite component of the battery and the switch of the light bulb

device (refer to figure 3) is chosen for processing. The behaviors of the battery-switch are

inferred as follows: m

" Using the serial allow pattern, an allow electricity behavior between the negative 3
terminal of the battery and end2 of the switch is inferred from the allow

electricity behavior of the battery between its terminals and the allow electricity 3
of the switch between its two electricity connections.

allow(electricity, <negative terminal. electrical, positive terminal- )
allowy(electric ty, <endl. electrical, endI2>switch )

serial(battery path. switch path)
allow(electricity, <negative terminalbattery, .... end2swicch>)

" Using the propagate pump pattern, a pump behavior from the negative terminal

of the battery to end2 of the switch is inferred from the pump electricity be- I
havior of the battery between its terminals and the allow electricity of the m
switch between its two electricity connections. I!
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pump(electricty. ,-negative terminal. electrical, positive terminal
allow(electricity. <endl. electrical. end2> 'witch)

serial(battery path. switch path)
= pump(electricity. <negative terminalb~terv .. end2,w )

The causal patterns are similar to Forbus's :ndlividual views and process

descriptions 14 . They all are for expressing the conditions that give rise to behavior.

The main difference is that the causal patterns are intended to be generic inferences for all

substances. Although individual views and process descriptions can be stated at a high

level of generality, there is no commitment in Forbus's theory to any particular level of

generality. e.g.. in practice. different types of substances such as liquid. gas. and heat have

different process descriptions. Withti, Forbus's theory. the causal patterns might be ex-

pressed as "universal" individual view- :. ad process descriptions.

2.6. Structural Relationships and Properties Used by the Causal

Patterns

Recognizing a causal pattern requires finding the behaviors of the appropriate types

and determining that the paths and locations of the behaviors satisfy specific structural

relationships. Since the behaviors of the device's parts are directly specified, finding the

behaviors is the easy part. However, in order to avoid anomalies, the serial and parallel

structural relationships need to be carefully defined and other structural properties need to

be introduced.

2.6.1. Serial and Parallel Relationships

The serial relationship cannot be as simple as "having one endpoint in common." For

e ample in figure 9, allow behaviors from A to B through D, and from B to C through D

can be inferred, but it would be improper to infer, from these two behaviors, an allow be-

havior from A to C. The reason is because both the A-B and B-C allow behaviors go

through the B-D segment. In a device with many possible circuits. the number of allow

behaviors would become very large if allows are permitted to "retrace" any part of their

paths. For the serial relationship then, the two behaviors cannot have any path segments
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tn common From a sim.lar argument a stricter condition can be ."orm1a:.-j - "r
endpoints, the two behaviors cannot have any connections or containers in common I

Figure 9: A Situation Illustrating a Difficulty in Defining -Serial"

For a different reason, the parallel relationship cannot be as simple as "'having both

endpoints in common." In figure 10. there are four different paths from A to D: A-B-D.

A-C-D, A-B-C-D. and A-C-B-D. The last two paths share path segments with each other

and with the first two paths, yet all four paths should be combined into a single allow be- 3
havior. Thus sharing path segments should not prevent al/ow behaviors from being parallel

However, it would be an obvious mistake to combine the A-B-D path with any path that I
already includes the A-B-D path. Thus, there is a need Co prevent an allow behavior from

being combined with allow behaviors that already incorporate it.

A

BC
0 .1

Figure 10: A Situation Illustrating Some Difficulties in Defining "Parallel" 3
Due to the problems with the simple definitions of "serial" and "parallel." we define

them as follows: I
I



I * Tvo )ehaviors are serial to t.ach orher If ind only if thev have ine er ip":!

common. neither behavior is a circuit. and. except for endpoints, the pathi ,)f

the behaviors do not intersect. Both endpoints are allowed to be in common. ;n

which case the two behaviors form a circuit.

I o Two behaviors are parallel to each other if and only if they have both endpoints

in common. neither one of them is a circuit. and each contains a path segment

not included in the other.

3 2.6.2. The Potential-End-of-Move Property

The above description of the pump move causal pattern would infer a mo' behavior

between the terminals of the battery since the pump and allow electricity behaviors of the

3 battery are on the same path. This inference is not useful because a more cannot begin or

finish at either of the battery's terminals: a move cannot actually happen without ad-

3 ditional paths. To avoid inferring moves over paths with endpoints that cannot serve as

the source or sink of a move, we introduce a property called "potential-end-of-move.'

I defined as follows:

oA place Is a potential.-end- of- move if and only if it is a container of significant

capacity, the location of an expel, create, or destroy behavior, or the source of a

3 pump behavior.

The definition is intended to cover the possible ways to provide or absorb a substance.

If a place has significant capacity, a substance can be stored for movement either to or

1 from the place. If a place is the location of an expel behavior or a source of a pump be-

havior, it is possible that a substance moving to the place could be further moved else-

3 , here. If a place is the location of a creatt or destroy behavior, then there is , %ay to

directly provide or absorb a substance.I
The pump move causal pattern, then, needs to be modified so that the endpoints of

the subbehaviors are required to have the potential-end-of-move property. It should be

noted that this property is not required for circuits.I

II
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2.6.3. The Propagatabie Property

Consider the diagram in figure It Suppose there are allow behaviors for each ;f tne

path segments. and that there are pump beha'iors from A to B (source at Ai. and from C

to B ;source at C). The propagate pump and serial pump causal patterns, as descrnbed

above, would create a problem, namely that more than one pump behavior would be in-

ferred on the A-B-C path. On the A-B-C path, the propagate pump causal pattern would

combine -he A-B pump with the B-C allow and the C-B pump with the B-A allow Also

the ,erzal allow causal pattern would combine the A-B pump with the C-B pump

Figure 11: A Situation Illustrating a Problem in the Propagate Pump
Causal Pattern

To avoid inferring a multiplicity of pumps over the same path. a property called

propagatable is introduced to constrain the situations where the propagate pump causal pat-

tern can be applied. "'Propagatable" is defined as follows:

" A place is propagatable if and only if it is not the location of an ezpel behavior.

In figure 11 all the places are propagatable.

* A path is propagatable if all the places within the path (all places excluding

endpoints) are propagatable, and if there is no pump behavior with a path seg-

ment and source on the path. In the figure, C-D is propagatable, while A-B

and B-C are not.

" An allow behavior is propagatable if and only if its path is propagacable

The propagate pump causal pattern can then be modified so that the allow subbehavior

and the common endpoint of the subbehaviors must be propagatable The propagate expel

causal pattern must be similarly modified to require the allow subbehavior to be propagat-



able. [n figure II. this would prevent the A-B ind B-C 1lL behaviors sand ar.'. /ij

behaviors inferred from them) from participating in the propagate, pump causal pattern. per-

mitting only the serial pump causal pattern to reason over those portions of the path k

slight complication occurs when the propagate e.pel causal pattern is matched--the allou..

subbehavior and any allow behaviors inferred from it must be marked as not propagatabie

2.7. The Effect of Behavioral Mode on the Causal Patterns

The behaviors inferred for the battery-switch need to take the behavioral mode of the

switch's allow behavior into account. Since the battery's behaviors always happen (more

precosely. the model asserts that they always happen) and the switch's allow behavior oc-

curs only during the closed mode, the behavioral modes of the inferred behaviors is also

"closed." In general. the behavioral mode of an inferred behavior is the intersection of the

behavioral modes of the subbehaviors. However, two kinds of interactions between causal

patterns and behavioral modes affect the inference of behaviors and the calculation of be-

havioral mode.

2 7.[. Interaction with Parallel Patterns - Split inference

Consider the situation in figure 12, in which a light bulb and a switch are parallel to

each other. The parallel allow causal pattern would infer an allow electricity behavior be-

tween A and B through the switch and light bulb during the closed mode of the switch.

However. during the open mode of the switch, it is important to remember that there is

still an allow electricity behavior through the light bulb. In this case, the -'unused mode"

of the light bulb's allow electricity behavior (the parallel allow inference does not infer any-

thing for the open mode) needs to be noted for further reasoning. t t

ItA similar action needs to be performed when the parallel allow causal pattern combines a one-

wiy with a two-way allow behavior. The "unused direction" of the two-way behavior needs to beIpecially noted.



Figure 12: Switch and Light Bulb in Parallel

This type of inferenre, which we call split inference, needs to be performed For ')tn-

kinds of causal patterns that involve parallel structures besides the parallel allow causal

pattern, namely the parallel pump, parallel move, include ezpel, and pump move causal pat-

terns. The latter two patterns, although they do not depend on the parallel structural

relationship, Lnfer behaviors that have the same endpoints as one of their subbehaviors. and

consequently. the overall behavior between those endpoints might be divided among the in-

ferred behavior and the unused portion of the subbehavior.

2.7.2. Interaction A.,ith Structural Properties

-ks defined, a place is a potential-end-of-.,ove if, e.g., it is the location of a create be-

havior The create behavior indicates that some substance is produced, and thus. move-

ment from that location might occur. Htwever, this is not true if the create behavior only

occurs during a particular behavioral mode. In oLher words, the create behavior makes its

location a potentia!-end-of-move only during the modes when it is active. A similar

scenario can be given for the propagatable property as well. A place, path, or allow might

be propagatable only during certain behavioral modes.

This complicates the causal patterns in two ways. One. the values of these properties

for a place, path, or allow cannot be simpiy true or false, bu, must indicate the behavioral

modes for which the properties are true. Two, the calculation of the behavioral mode of

inferred behaviors must take this information into account in addition to the behaviGral

modes of the subbehaviors.
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As an dlustratLon of the consequences. this is the modified definition f tne pr.p,z),ii

pump causal pattern.

* Propagate pump A pump behavior can be caused by a pump and in allow. be-

havior in serial. The sources of the inferred pump are the sources of :he pimp

subbehavior. The allow subbehavior and the common endpoint of the -ub-

behaviors must be propagatable. The behavioral mode of the inferred behavior

is the intersection of behavioral mode of the pump subbehavior. the allow 'ub-

behavior, the propagatable property of the allow subbehavior. and the propagat-

able property of the common endpoint.

2.8. Behaviors of the Light Bulb Inferred with the Causal Patterns

Consider the combination of the battery-switch (refer to the end of Section 2.5) and

the light bulb in the device of figure 3. The causal patterns allow the following behaviors

to be inferred.

* Using the serial allow causal pattern, an allow electricity behavior around the

circuit during the closed mode of the switch is inferred.

* Using the propagate pump causal pattern, a pump behavior around the circuit

during the clesed mode is inferred.

* Using the pump move causal pattern, a move behavior around the circuit during

th closed mode is inferred.

* Using the parallel allow causal pattern, allow behaviors are inferred from the

battery-switch connection (the connection between the battery and the switch) to

the battery-light bulb connection (ont part of the path goes through the battery

and the other through the switch and the light bulb). from the batter-,.itch

connection to the light bulb-switch connection. and from the light bulb-switch

connection to the battery-light bulb connection. All the behaviors occur during

the closed mode of the switch.



e Spit inferences on the parallel allo,, inferences point out a nurnoer .4i , I
For each subpath that does not go through the switch, an allou. behavior during

the open mode of the switch is inferred.

I
3. Other Representational and Processing Considerations

Although the causal patterns provide for the commonsense inference of a signiFicant

por.ion of device beh?.. )r. they lack the capability to handle the following aspects of be- I
havior

1. The causal patterns do not account for differences between substances. In the

example so far. it did not matter what substance was the object of the be- 3
haviors as long as certain behaviors acted upon the same substance.

2. The causal patterns do not account for interactions between behaviors. For ex- I
ample, an interaction crucial to the behavior of the light bulb, but not

represented, is the relationship between the flow of electricity and the produc-

tion of light.

3 Finally, additional processing is needed to avoid combinatorial difficulties in con-

solidation. Remembering all the behaviors of the individual components as well 3
as those inferred will present a combinatorial problem. Using the causal pat-

terns exhaustively will result in a search of all paths in the device not to speak I
of parallel combinations of them. 3

This section discusses our solutions to some of these problems.

. 1. Representing more Detail about Substances I
I

I
I



31.1. Attributes of Behaviors

Consider the allow electricity behavior of the light bulb.

3 allow electricity between endl and end2 thru electrical

There is more to say about this allow behavior than simply describing its path. The path

has certain characteristics that affect how electricity travels through it. In particular. this

3 path has something called resistance that can be measured. i.e., that has a specific value

Characteristics like resistance that describe behavior or structure in more detail are ralled

3 attr1butt .

Most of the behaviors have a natural attribute that measures its size: move by rate

of movement, create by rate of creation. destroy by rate of destruction, and expel and

pump by amount of influence. Also, some behaviors, especially allow behaviors, might have

special attributes that have a specific meaning with regard to the substance, e.g., induc-

3 tance in electricity. The attributes of a behavior should be a function of the type of be-

havior and the type of substance. Naturally, different theories of the world might be more

or less detailed (i.e., have more or fewer attributes) depending on the amount of expertise

3that is desired or learned.

All the behaviors of the light bulb device have attributes. Each allow electricity be-

havior has a resistance attribute. The pump electricity behavior of the battery has an

amount of influence (voltage). The create light behavior of the light bulb has a rate and

a color (the latter is not represented) The allow signal behavior of the switch might

3restrict the kinds of "messages" th.... .. pass through it.

Containers have attributes of capacity and amount. The containers of the light bulb

device can be modeled with --zero- or "infinitesimal~ capacity, so interesting issues concern-

ing these attributes do not arise. Below, we will present an example in which the

capacities of containers have significant behavioral consequences.1
l
I



Because our interest in this paper is in sh, winz how the behaiora, reicn.n ._ n- I
trolled and not how arithmetic reasoning is performed. we have not incorporated a 3
framework for arithmetic reasoning such as Simmons 30 However. we shoid note that

consolidation requires few assumptions about the values of attributes. An attribute for a 1

behavior or container at any single point in time has a single value of a partic:ilar t pe

We do not impose any restrictions on what types are allowable. The value of an attribute 3
might be an integer, real number. vector, element of a discrete set. or whatever For ev-

ample. the resistance attribute of an allow electricity behavior must be a non-negative real 1

number, while the message attribute of a mote signal behavior might be restricted to on or 3
off.

The issue of representing and reasoning about attributes has been addressed in some I
detail for the case when the values of attributes are restricted to be continuous.

qualitatively-specified real numbers '10, 14, 19, 37, 381, which have been called quantities.

However. our commonsense reasoning appears to use types of values that typically are not 3
handled by the above work. The value of an attribute might be an integer, e.g.. the num-

ber of marbles contained in a jar, or might not be a number at all. e g., the color of a 3
substance. 12

3.1.2. Integrating Knowledge about Substances with the Causal Patterns

In the combination of the battery and switch, two new behaviors were inferred based

on the causal patterns. However, the causal patterns do not supply the values of the

behaviors' attributes, for instance, the resistance of the allow electricity behavior through 1

the battery and the switch. Knowledge about electrical resistance is clearly required. but it

would ruin the general nature of the causal patterns if they included specific kn , ledge

about electricity, as well as about all other substances. 3

' 1Color could be an attribute of expel and move light behaviors. Of course. color is expre-slble I
a.6 numbers. i.e. the spectrum of the light waves, but we doubt that most people reason about light
that way. 3

U



3 knother probiem is that the causal patterns sometimes infer behaviors chat do n, ;r.

cur. For example. in figure 13 there are two batteries that oppose each other. If they

3 have equal voltage, there is no voltage from A to B. so there is no pump electricity be-

havior from A to B. However, the serial pump causal pattern infers a pump electricity be-

I havior whethc,' the voltages of the two batteries are equal or not. but insercing knowledge

of this type into the -,i al patterns would detract from their generality

I ®- ,H-, ' F-Q

3 Figure 13: A Device in Which an Inferred Behavior does not Occur

3 The answer to these problems is to separate knowledge about substances from the

causal patterns, but to organize substance knowledge around the causal patterns. That is,

3 for each causal pattern and each substance, there can be a chunk of knowledge that in-

dicates how to compute the attributes of the inferred behavior from the subbehaviors. For

example. when the serial allow pattern is satisfied on two allow electricity behaviors, part

3 of the "'serial allow-electricity" knowledge says to compute the resistance of the inferred be-

havior by adding the resistances of the subbehaviors. Similarly, when the propagate pump

3 pattern is satisfied on a pump and allow electricity behaviors, there is knowledge that as-

serts that the voltage of the inferred pump behavior is equal to the voltage of the pump

i subbehavior.

3 The substance knowledge can also be given the responsibility to determine whether the

inferred behavior is spurious. In figure 13, the serial pump-electricity knowledge can deter-

I mine that the voltage is zero, and on the basis of this information, can undo the inference.

Thus in addition to computing the values of attributes, knowledge about substances also

can determine whether the inferences made by the causal patterns are reasonable with

3 regard to the specific situation. The role of the causal patterns is to hypothesize behaviors

based on general information, and the role of the substance knowledge is to figure out the

3 details, ruling out any behaviors that do meet certain requirements.

3
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The claim is this: Knowledge about each substance should be organized ir',un,= .r.e i
kinds of behavioral inferences that can be made. This simplifies both the causal patterns

and the substance knowledge. The causal patterns do not need to incorporate detals about

substances. and each substance does not need to have its own behavior inference 3
mechanism.

The substance knowledge for the parallel patterns is more difficult to specfy than fLr I
the serial patterns, mainly because parallel behaviors can share path segments For some 3
of these situations (such as in figure 10), an exact analysis would require complicated com-

putations. such as those to solve the equations derived from Kirchoff's Laws However. if 3
some loss of information is acceptable. a less demanding computation can be cone, e.g.. the

"'normal" parallel computation for electrical resistance gives a lower limit on the resistance 3
of parallel allow electricity behaviors.

In this paper, we do not provide a language for specifying substance knowledge, but do

assume that substance knowledge is available as needed. In our implementation, a proce- 3
dure was coded for each causal pattern-substance situation that occurred in the examples

we used. Although this is unsatisfying as a complete theory of behavioral reasoning. it ,s I
sufficient to show how reasoning about attributes fits with consolidation. That is. the 3
causal patterns provide the context for applying specific knowledge about substances. and

thus controls reasoning about attributes and provides a basis for the organization of sub-

stance knowledge.

3.2. The External Description of a Composite Component 1
The battery-switch composite component not only has the behaviors that were inferred 3

using the causal patterns, but also all the original behaviors of its subcomponents. The

structure of the battery-switch is the union of the switch's structure with the battery's

structure, except that the endl connection of the switch is the same as the positive ter-

minal of the battery. It would appear that as composites include more components. their

F
a
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behavioral descriptions become more complex. making it more difficult to use them in c.en-

solidation. There are several sources of complexity:

e The number of behaviors. Since consolidation is mostly based on matching be-

haviors. the number of behaviors of the original components and those that in-

ferred from them potentially make consolidation more complex for larger com-

posite components. For complex structures like figure 10. the total number of

behaviors can increase rapidly. exponential in the worst case.

* The number of structural elements. Composite components, of course, have all

the structural elements of their subcomponents. Inferred behaviors become more

complex because they have more internal structure. For example. the inferred

allow behavior of the battery-switch needs to refer to five structural elements to

describe its path. Because there can be many different combinations of paths,

the size of the behaviors' structural descriptions may become very large.

* The number of behavioral modes. The behavioral modes of a composite com-

ponent are the cross-product of the sets of behavioral modes of its subcom-

ponents. Since each behavioral mode might have its own corresponding set of

behaviors, this potentially results in a combinatorial increase in the number of

behaviors.

Is all this detail needed to describe a composite component for further consolidation.

The answer is no as long as some loss of information is acceptable. That is, by summariz-

ing or --forgetting" details, a more compact, efficient description of a composite can be

derived. The drawback is that where details make a difference, such as the application of

Kirchoffs Laws to circuits with structures like figure 10. some loss of information is in-

evitable.

Our framework provides for the summarization of a composite component in two ways.



44

One. composite containers are created as combinations of containers and connectur,"

Whenever a causal pattern infers a behavior that goes through two or more structurai ele-

ments, a composite container is derived from them. For example. the inferred allow be-

havior of the battery-switch would go through a composite container formed out of the

electrical containers of the battery and switch, and the connection between the battery and

switch. The inferred pump behavior goes through the same composite container as the in-

ferred allow There is one exception: if the inferred behavior is over a circuit. no com-

posite container is made. If a composite container were made for a circuit, the direction )f

the behavior would be lost.

Two. only those behaviors, containers, and connections that describe the ezternal be-

havior of the composite are selected for further consolidation. Many behaviors, containers.

and connections of the composite become irrelevant for describing how the composite com-

ponent behaves with respect to the rest of the device. Those that are relevant become the

external description of the composite. For example, the allow electricity behavior of the

switch is irrelevant to the external behavior of the battery-switch because the inferred allow

electricity behavior incorporates all the useful information about the switch's allow behavior.

i.e.. useful for further reasoning about the overall behavior of the light bulb device.

Below we propose criteria for determining the external description of a composite.

These criteria are conservative in that some behaviors Lhat are not external are selected.

However, they prune much of the total description of the composite. Each criteria tests

three things: one, whether the behavior operates on "external" structural elements: two.

whether the behavior can be used in a causal pattern for future consolidation: and three.

whether the behavior is redundant, i.e.. whether another behavior that also satisfies the

other two criteria makes this behavior unnecessary to remember. Some definitions are use-

ful for describing the criteria.

13 The term "composite" by itself is always used to refer to a composite component, never a
composite container.



A connection is an external connt'tzon of a composite if it connects .ne :-M.
posite to -.ther components or is a connection of the device to the outside %orid

A container is an external container if it is an endpoint of an external allow be-

havior.

These are the criteria:

l Allow behaviors. An external allow behavior must satisfy one of the following

a. The allow behavior is propagatable and its endpoints are external connections

or potential-end-of-moves. The allow behavior is redundant. however, if tt

has been used in a parallel allow causal pattern to infer an allow behavior

that is also propagatable. This remembers allow behaviors for the

serial parallel allow and propagate pump causal patterns. Allow behaviors

that do not go through the composite component or do not end in a poten-

tial sink or source within the composite cannot result in inferring future

moves.

b. The allow behavior is on the same path as an external pump behavior. This

is needed for the pump move causal pattern.

c. The structure of the allow behavior corresponds to the difference or the inter-

section of an external propagatable allow behavior with an external pump be-

havior. This is needed to distinguish between the propagatable and non-

propagatable portions of intersecting external behaviors.

2. Pump behaviors. One of the following criteria must be satisfied:

a. The endpoints of the pump behavior are external connections or containers.

However, the behavior is redundant if it has been used in an include ezpel.

pump move, or parallei pump causal pattern.

b The pump behavior is on the same path as an external allow behavior, but

has not been used in an include expel causal pattern.

3 Move behaviors. The endpoints of an external move behavior must be external

connections or containers, and the move has not been used in a parallel move

causal pattern.



4 Ezpel behaviors An !zpl behavior is external if t is located at an . I
container and has not been used in a propagate extel or include ezpel.

5 Create and destroy behaviors. A -:reate or destroy behavior is external if !t :S

located at an external container. 3
6 Change mode behaviors. A change mode behavior is external if it involves be-

havioral modes that determine what external behaviors are active.

7 Any behavior inferred from external behaviors. i.e., if all the subbehaviors of a

causal pattern used to infer the behavior are ex-rnal.I

In the battery-switch, the two inferred behaviors .re external because their endpoints 3
are external connections and they have not been used in a parallel inference. The change

mode behaviors of the switch are also external because the open and closed modes of -he I
switch determine whether the inferred behaviors are active. The other behaviors of the

battery-switch are internal, primarily because each behavior has an endpoint that is an in-

ternal connection. Consequently, the electrical containers of the battery and the switch. 3
and the connection between them do not need to be referenced in the external description

of the battery-switch. 3
These two summarization features, composite containers ,-d external description 3

criteria, are not sufficient to handle all the problems that can occur. In particular. the

number of behavioral modes can be still be very large, creating a need to compose be- 3
havioral modes in some manner. We have not determined how composition of behavioral

modes can be done. Also, if a device has many containers that are potential-end-of-moves, I
the external description criteria ensures that they are kept in the external description. We

nave not resolved '. .Is issue either. I
I

l
I
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3.3. Dependencies between Behaviors

3.3.1. Representation of Dependencies

The value of an attribute can be used to express how one behavior is dependent )n

other behaviors. For example, the create light behavior of the light bulb is dependent on

the movement of electricity through the light bulb. To express this dependency. the rate

of the create behavior can be described as:

proportional (magnitude (rate
[move electricity from endl to end2 thru electricalJ)))

That is. the rate of light creation has a specific relationship with the rate of electricitv

movement through the light bulb. Whenever the rate of movement can be determined. it

can be substituted in this expression. and the magnitude and proportional operations can be

applied to it.

Other light behaviors of the light bulb also have dependencies. The amount of the

expel light behavior is proportional to the rate of the create light behavior:

proportional (rate [create light in light source])

The destroy light behavior gets rid of any light that does not move out of the light bulb:

difference (rate [create light in light source]

rate [move light from light source to surface])

Expressing the depent'er within the value of an attribute rather than directly within

a behavior is done for a good reason. Simply stating that a behavior has some dependency

doesn't describe how the dependency affects the behavior. The behavior might still be ac-

tive even if the dependency is not satisfied, e.g., the dependency might only affect the in-

tensity of the behavior.

3.3.2. Tracking Dependencies to Inferred Behaviors

Suppose that instead of consolidating the battery and switch, the light bulb and switch

were chosen. An allow electricity behavior through the light bulb-switch would be inferred.

the two original allow electricity behaviors would be not be part of the external description



I

I)f the light bulb-switch, and their connectLon and containers %ouid not be referencei :r.

light bulb-switch's external description. I
This creates a difficulty in the description of the create light ehavior of the Igh:

bulb-switch because its dependency references places that are not part of the external I
description, e.g.. endl of the light bulb. Our solution is to modify the dependency so it

only refers to the external description of the light-bulb switch by changing the rate 4uan-

tity from: 3
proportional (magnitude (rate

Emove electricity from endl of the light bulb
to end2 of the light bulb
thru electrical container of the light bulb]

to 3
proportional (magnitude (rate

[move electricity from endl of the switch

to end2 of the light bulb
thru electrical container of the light bulb-switch]

This solution requires that the possible ways to move through the light bulb be mapped to 3
the possible ways to move through the light bulb-switch, modifying the dependency expres-

sion as necessary (e.g., if the light bulb and switch were parallel. the fraction of electricity

going through the light bulb would need to be computed). 3
We have not developed a complete method for tracking dependencies from components

to composite components, but we have studied move dependencies in some detail. Since in- I
ference of a move behavior requires an allow behavior, external allow behaviors that move 3
through the dependency represent the possible ways that movement through the composite

component can affect the dependency. These allow behaviors can be identified. and the

dependency can be appropriately modified by trackin , the inference of allow behaviors from

the path of the dependency to external allow behaviors. Move behaviors that go through 3
the dependency can be similarly identified.

I
I'I
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There is no special difficuty if several external a1ow.s go through the dependenc, k.l

of them can be remembered as possible ways to travel through the dependency However

if several moves are inferred, there is the problem of how to add them together. Simpl.

adding their rates together fails for two reasons:

" The rate of a move might be zero due to failure of implicit conditions. If the

3 source container of a move is empty, or if the sink container is full. then the

rate of the move is zero. The sum of the moves needs to be conditioned to

I take this into account.

" SLnce the moves share path segments (at least the path of the original

dependency). and since their pumps are likely to overlap (one pump might be in-

3 corporated in several moves), the result of adding them together will probably be

too high. This is because the shared allows and pumps might have an upper

3 limit on their capacity.

3I  Due to these difficulties, we have been unable to formulate a general way to handle

situations in which several moves satisfy a dependency. However, there are special situa-

3 tions where the number of moves to be considered can be reduced. For example, when a

set of moves satisfying the dependency have the same endpoints, then the move inferred

I from them based on the parallel move causal pattern incorporates all the influences and

paths that need to be considered.

3.4. Planning Consolidation

I The role of planning in consolidation is to choose what components to consolidate In

this choice, there are several goals that need to be considered:

e Minimize complexity of reasoning Composite components with fewer external

3 connections and behaviors are, in general, easier to reason about than composites

with larger external descriptions. More connections and behaviors means that

I the composite components interact in more ways and along more paths. The

number of behaviors cannot be predicted without using the causal patterns, bL.

I
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the number of externai connections of a cornposte can be determine in a,- I
vance!

" Maximize information. The order in which components are consolidated can af-

fect the amount of information that is lost. For example in figure 10. it is bet- 3
ter to consolidate all the components in this subsystem than to consolidate any

part of it with other components that are serially connected to it In general it 3
is better to consolidate loops than to consolidate components both in and out of

the loop I
" Choose reasonable subsystems. It would be good if composite components looked 3

like reasonable subsystems to people. With more spatial information, one could

choose subsystems based on spatial closeness. This assumes that components 3
that are closer tend to be grouped into the same subsystem. For a specific

domain, there might be patterns of components that are commonly used in 3
devices and commonly thought of as subsystems. Since our structural represen-

tation omits a lot of spatial information and since we have not concentrated on 1
a single domain, we have not emphasized this goal. 3

The reduction of complexity goal is clearly the most important. [n complex devices.

the choice can easily lead to order of magnitude differences in the amount of work done. I
The main heuristic is to choose subsystems with as few external connections as possible.

This heuristic also tends to satisfy the maximize information goal since consolidating loops

tends to lead to subsysters with fewer external connections. 5
One simple way to implement this heuristic is a top-down approach, i.e., divide the I

ece into two subsystems with a minimal number of connections between them. and

recursively divide the subsystems. This is almost the same problem as minimal cut of a 3
graph. which has a polynomial algorithm. Another simple method is bottom-up -examine

the possible pairs of components that can be consolidated, and choose the pair with the 3
fewest external connections. With minor refinements, we implemented both approaches. and

both of them gave good results on the examples we modeled. 1
U



3 3.5. Explanation of Behavior

The primary effect of the light bulb device is that light is produced when the switch is

closed. Consider now a composite that consists of the battery-switch and the light bulb

Th,, inference can proceed as follows (figure 14 illustrates the inferences that derived the

creation of light from the behaviors of the components):

3 * The allow electricity behaviors of the battery-switch (box 9 in the figure) and

light bulb (box 5) satisfy the serial allow pattern, resulting in an alloi

I electricity behavior around the electrical circuit (box 11). The resistance is the

sum of all the individual resistances. The behavior is active only during the

closed mode.

* The pump electricity behavior of the battery-switch (box 8) and the allow

electricity behavior of the light bulb (box 5) satisfy the propagate pump pattern.

3 from which a pump electricity behavior around the circuit is inferred (box 10).

The amount of influence is equal to the amount of the battery-switch's pump

I electricity behavior. The behavior is active only during the closed mode.

e The two behaviors inferred above (boxes 10 and 11) satisfy the pump move pat-

tern. so a move behavior around the circuit is inferred (box 13). The rate of

3 the move is a function of the resistance of the allow behavior and the amount of

influence of the pump behavior. The behavior is active only during the closed

I mode.

* The move electricity dependency in the create light behavior of the light bulb

(dashed line from box 6 to box 5) is tracked from the azllow electricity behavior

3of the light bulb to the allow electricity behavior around the circuit (dashed line

from box 14 to box 11) to the move electricity behavior around the circuit

3(dashed line from box 16 to box 13).

* This move behavior satisfies the dependency expressed in the create light be-

I havior of the light bulb (represented by dark dashed line). The rate of light

creation is proportional to the the rate of electricity movement.

I
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This inference structure illustrated by Figure 14 can be directly used as in

of how this device produces light. We claim that this ezplanation pro,'ides a compi.t-

• ausal account of the creation of light in the light bulb system in terms of the omponent,'

b.-hatior and the device's structure. The completeness of the explanation is not in terms

of a precise analysis of the quantities. but of how the qualitative behavior of the com.

3 ponents leads to the qualitative behavior of the device. The inference structure identifies

the role of each component behavior by showing how they interact with each other :,i

result in movement of electricity and creation of light.

Also note that because all the electrical connections are internal to the device. no

electricity behavior will become part of the final description of the devices behavior. Only

the signal. light, and change mode behaviors will be selected as external behaviors of the

light bulb device. The device's external description states only what the outward behavior of

the device is. not how it is accomplished.

4. Example: Cardiovascular System

A model of the cardiovascular system was developed in collaboration with Jack

W. Smith, Jr. and John R. Svirbely '21. Our intent was to develop a model that could

form the basis for explanation and prediction of behavinr bsed on changes in structure and

behavior In addition, part of the purpose of this e: ", is to illustrate some of the

reasoning behind the development a behavioral model of a physical system.

Figure 15 illustrates our representation of the top level structure of the cardiovascular

system. The right side of the heart moves blood into the pulmonary circulation. where the

blood absorbs oxygen from and releases carbon dioxide into the lungs. The blood then

flow3 to th- left side of the heart, which pumps it into the systemic circulation, where the

blood exchanges oxygen and carbon dioxide with the interstitium. Cardiovascular

Control represents that part of the nervous system that regulates and synchronizes the
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,)ther ccmprnents Only two open connections t- the lungs an th- .r:er" irrn. 1r-

represented. !
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Figure 15: Structure of the Cardiovascular SystemI

4.1. Modeling the Cardiovascular System
One might model the cardiovascular system with pump blood behaviors to Right Heart I

and Left Heart: one-way allow blood behaviors to all the components except

Cardiovascular Control; and allow and ezpel signal behaviors to and from

Cardiovascular Control so it can adjust cardiac output. However, because the Pulmonary 3
and Systemic Circulation do not have ezpel blood behaviors, this model would be inade-
quate for any situation in which the pressure in the Pulmonary and Systemic Circulation 3
becomes a significant factor, which is true for many cardiovascular disorders.

A more accurate description of Pulmonary and Systemic Circulation would include
azpe blood behaviors that depend on the amount of blood that is contained and on signals 3
from Cardiovascular Control to constrict blood vessels. This would be further Pmproved

!
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b. havng the behaviors of Cardiovascular Control depend on -he arnin ,"-

blood behavior of Systemic Circulation. reflecting the behavior of the barorecept.)r

which -ense the arterial pressure and pass thar information to the brain

Fzure 16 is a simplified version of the Left Hearts behavior in our model The be-

havioral modes of the Left Heart are systole and diastole. The synchronization of

these modes is controlled by signals coming into the control connection The Left Hear:

chanoes from the diastole mode to the systole mode when it is ignalled to dc -(;

C'hanging back to the diastole mode occurs when systole is finished. Also note that the

there is a pump blood behavior for each mode. Amount-of-expansion-for.ula ,nd

systole-duration-formula stand for the expressions that determines the expansion of

ventricle during diastole and how long systole lasts, respectively.

The components of Left Heart are given in figure 17. The Mitral and Aortic Valve

components have one-way allow blood behaviors, while the Left Atrium and Left

Ventricle have two-way afiow behaviors. The Left Atrium and Left Ventricle hae

expel blood behaviors that are regulated via the atrium control connection and

ventricle control connection, respectively.

The allow blood behavior of Left Heart is caused by the allow blood behaviors of its

components (see figure 18). Note that the one-way allow behaviors of the Mitral Valve

and Aortic Valve makes the Left -Heart's allow behaviors to be one-way. The pump

blood behaviors are a result of the ezpel behaviors of Left Ventricle (one each for

systole and diastole) and the allow blood behaviors. The allow signal and change mode

behaviors are taken from Left Ventricle (not shown in figure 18) Figures 16-li are

simplified as they ignore the expel blood behaviors and the behavioral modes of Left

Atrium. k full account of Left Heart's behavior would incorporate the pump behaviors

caused by the Left Atrium, as well as the additional behavioral modes. However. it would

be desirable to also derive the simpler description since it has sufficient information for

many reasoning situations.
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Left Heart

pulmonary blood aorta

Connections: 3
pulmonary ,f blood, aorta of blood
control of s-gnal

Containers: 3
•.-entricle of blood, capacity positive
ner-es of signal, capacity infinitesimal

Modes:
systole
diastole

Behaviors:
allow blood from pulmonary to ventricle
allow blood from ventricle to aorta
pump blood from ventricle to aorta, mode systole.

amount (proportional (amount-to-contract
(move signal from control to nerves,

message start-systole ]))
pump blood from pulmonary to ventricle, mode diastole

amount amount-of -exp&nsion-formula

allow signal from control to nerves
change mode to systo-.". mode diastole, 3

when [move signal from control to nerves,

message start-systole]
change mode to diastole, mode systole,

when [duration(systole) > systole-duration-formula]

Figure 16: Behavioral Description of Left Heart

3'I
pulmonary (Left Mitral LetrIc aorta3

Atriu Vale Venricl

Figure 17: Components of L- .eart

I
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Figures 19 and 20 illustrate the behavior of Syster.mic Circulat-on and its itruc!itre

Two connections to the interstitium for the flow of oxygen and carbon dioxide are needed

because the representation and reasoning can only handle one kind of substance per connec-

tion. This is the result of an inability to represent mixtures The -econd allo, blood be-

havior is one-way because the Veins do not allow back flow. The interaction with the

interstitial connection comes from the Capillaries. The expel blood behavior is a

combination of the expels of its components. primarily the Arteries and Veins. The 'vpU!

Signal behavior arises from the Arteries.

The behaviors of Cardiovascular Control use the signal from the Arteries to send

signals that regulate the behaviors of the other components. For example. the signal for

contracting the heart can be represented as:

pump signal from control-center to left heart, message contract,
amount - to-contract (proportional (amount -of -pressure

(move signal from systemic circulation
to control-center, message pressure]))

When the components of the cardiovascular system are considered together, the allow.

expel, and pump blood behaviors can be used to infer move blood behaviors between the

components and around the circulatory system. Because blood contains oxygen and carbon

dioxide. the carry move causal pattern can be used to infer move oxygen and move carbon

dioxide behaviors from the move blood behaviors. The paths for the flow of oxygen and

carbon dioxide through the cardiovascular system are completed by connections to the inter-

stitium (see figure 19) and to the lungs.

4.2. Modeling Hypovolernia and other Conditions

When there is a significant loss of blood, the cardiovascular system compensates in a

number of ways. Some of these are directly represented, e.g., the effects of signals from

Cardiovascular Control, while others require simulation knowledge, such as the distribu-

tion of the blood, and the size of the signals sent to the heart.
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Systemic Circulation

3 control

aorta blood right atrium

interstitialI
Connections:

aorta of blood, right atrium of blood, control of signal

interstitiall of oxygen, interstitial2 of CO2
Containers:

•.essels of blood, capacty positive

nerves of signal. capaczty infinitesimal

Behaviors:

allow blood between aorta and vessels,

resistance (proportional (amount-to-constrict

[move signal from control to nerves, message constrict]))
allow blood from vessels to aorta.

resistance (proportional (amount -to-constrict

[move signal from control to nerves, message constrict)))
allow oxygen between vessels and interstitiall

allow CO2 between vessels and interstitial2

expel blood in vessels, amount

(doubleProportional [amount vessels] (am'.unt-to-constrict

[move signal from control to nerves, message constrict]))

allow signal between nerves and control
expel signal in nerves. message pressure. amount-of-pressure3 (proportional (amount [expel blood from vessels]))

3 Figure 19: Behavioral Description of Systemic Circulation

I
I

3 Figure 20: Components of Systemic Circulation
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.k h. povolernic condition (low blood volume) Aouid resiit n the fo:,., prpai ,.l

of effects in our model (see figure '1) First. the ezp.l behaviors of the circulation coM-

ponentS decrease since they are proportional to the amount of blood The S:ste-rc

Circulatoon sends this information to Cardiovascular Control b its expel signal be-

havior and a rnote signal behavior between the two components. Cardiovascular Contro!

then sends signals that result in (among other things) increasing the heart's contractlihty

and increasing the resistance and pressure of the circulation. These actions maintain 'if

possible) the blood pressure (amount of Syste-ic Circulation's expel blood behaviorl

amount of blood in System Circulation

proportional
expel blood in Systerric Circulation

roportional

expel signal in Systemic Circulation

c~auses

move signal from Systemic Circulation proportional
to Cardiovascular Control

(nverse proportional

itexpel signal in Cardiovascular Control

( ca uses

move signals from Cardiovascular Control
/to Left Heart and Systemic Circulation

proportional proportional

pump blood allow blood
thru Left Heart thru Systemic Circulation

Figure 21: Effects of Hypovolemia in the Cardiovascular Model

The increase in pressure is best understood by considering the components of Syste.uc

Circulation. and what a simulation process would show. The pressure in the Arteries is

proportional to the amount of blood in it. The increased activity of Left Heart moves
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more blood into the Arteries the increased resistance -f the Arter:oles and "he "ej.rIs

tends to keep more blood in the Arteries.

Other conditions that can be partilly modeled with this representation include heart

congestion ind fetal circulation. If cardiac failure is represented as decreased contractility

then the heart's pump blood behavior decreases, which results in less blood pressure Com-

pensiation bv increased venous pressure raises the blood pressure in the Pul.onary

Circulation. If we represented the fluid flow between the lungs and the Pulnonar y

Circulation. increased flow into the lungs (which can lead to pulmonary edema) would te

predicted.

To represent fetal circulation (and some heart defects). additional paths for blood can

be added to the representation. Consolidation can be used to determine the new behaviors

of the cardiovascular components. A simulation would be required to determine how the

distribution of blood and oxygen would change.

5. Weaknesses of the Current Framework

.5.1. Spatial and Temporal Reasoning

In order to proceed with our research, it was necessary to oversimplify various aspects

of Naive Physics reasoning, one of which is spatial representation and reasoning. The main

drawback is that the structural primitives are limited to connection and containment To

fully represent and reason about the behavior of complex devices, the shape and relative

position of components need to be describable. It is important. e.g.. to know that a piston

of a car is shaped to fit inside a cylinder and to infer how the positions of the piston are

constrained by the cylinder and other engine parts.

Another difficulty is the distinction between components and substances. For example.

a piston acts both as a component and a substance. In its component role, it is connected



to other parts of the engine and transfers energy A a _ubstance. the pistn ran be acIe, I
upon. and can move from one place to another In general. the inability to describe moe- 3
ment of components. as well as the structure of substances. is a severe limitation

The solution to these problems is to develop a spatial representation system in which I
shape. position. orientation, and movement can be naturally described and reasoned about. 3
a very difficult research problem. The work of both Forbus and Stanfill is relevant this

problem 13. 32 . Unfortunately, their solutions are limited in scope. as their domains are 3
characterized by precise knowledge of shapes and very few types of substances.

We speculate that a consolidation process that builds upon Haves's notion of "'pieces of

space" IS (we use the term 'space regions" below) would produce interesting results. 3
First. there needs to be a simple representation of space regions that allows composition of

regions into larger regions and maintains information about neighboring regions and relative 3
direction. e.g. whether one region is up, down, or some other "direction" from another

region. The intent of the representation would be to model space similarly to how Mllen I
models time I'. In analogy to Allen's work, space regions correspond to time intervals.

and neighbor and direction information correspond to interval relationships This represen-

tation could be further elaborated to describe other spatial relationships and properties, in 3
part by borrowing ideas from vision and graphics research an representing shape (Pentland's

work on representation of shape for vision is relevant here '241). Consolidation could then 3
proceed by combining regions, i.e. space regions correspond to components. and combina-

tions of regions correspond to composite components. The main problems are to qualita- 1

tively describe space regions and perform consolidation based on their composition and 3
shape.

We have -Iso ignored temporal reasoning in our description of consolidation, mainly be- 1
cause 'mpur.i reasoning does not play a role in matching causal patterns. Instead. tem-

poral reasoning comes into play in expressing the values of attributes, and in calculatinr, ,,
II I U
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3 the attributes of nferred behaviors. For example. if the battery of the 'ight bu,.b de.:e

were replaced with AC current, the voltage would need to be described as an oscillating

I value. When this value is used to calculate the attributes of inferred beha,Iors. tempGral

reasoning is needed to handle this information appropriately

.3.2. 'Substances

I Various aspects of reasoning about substances have been omitted or simplified in our

3 framework. The most serious omission is the lack of a language for specifying knowledge

about substances. i.e.. for calculating attributes and handling dependencies on inferred be-

3 haviors. Qualitative arithmetics such as Simmons's 30 may lead to a solution to this

problem.

I One simplification is that general types of substances are not represented or reasoned

3 about. For example, it would be more accurate to attribute a move fluid behavior to a

pipe rather than a move water behavior. This would generalize the behavior the pipe. and

3 would eliminate the need for other "kinds" of pipes for other liquid substances. This kind

of problem occurred in the cardiovascular example in which different connections for oxygen

I and carbon dioxide were required. However, there is a difficulty with reasoning about

3 general types of substances. When a t.pecific type of substance is considered, how should

knowledge be inherited from general types of substances and integrated with specific

3 knowledge?

3 Another simplification is that mixtures of substances are not handled in a general way.

Our current framework can represent some mixtures as one substance containing another.

3 but this is inadequate for reasoning about interactions between substances. Mixtures occur

in two ways. One is the mixture of different substances, such as oxygen and carbon

3 dioxide in the blood in the cardiovascular system. and heat and light in the light bulbs in

the light bulb devices. The other is the mixture of different states of the same substance.

I such as the gas and liquid states of the refrigerant in a refrigerator. The problem is not

I
I
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so much in representing that something is a mixture of various substances aS in reisZ.n~nz

about this information. One solution is to treat mixtures as special kinds of substance

with their own behavioral descriptions. The consolidation process needs to be extended "

use this knowledge appropriately.

.5.3. Summarization and Abstraction

The current summarization process incorporated within consoliaation (composite con-

tainers and external behavior description) does not always provide a concise and efficient

behavioral description of the device. Only part of the problem can be solved by more

summarization processes. In addition, there is a need to abstract a single behavior out of

a group of behaviors.

Failure to derive an efficient description is due to three causes. A behavioral descrip-

tion might have too many behavioral modes, too many structural elements, or too many

behaviors (even when the first two problems have been dealt with). Having too many be-

havioral modes results from the fact that the devices's set of behavioral modes is logically

the cross-product of the behavioral modes of the components. Two ways to reduce the

number of behavioral modes are finding groups of modes that have the same behaviors, and

to analyze the dependencies between behavioral modes to determine if the device prevents

(due to its design) many of its behavioral modes from occurring.

If the cardiovascular system were to be described down to the capillary level of detail.

there would be a problem with consolidating all the capillaries into a single

subsystem-they aren't connected to each other. Consolidating groups of similar. but pos-

;ibly |,nconnected. elements into.one subsystem is one way to avoid having too many struc-

tural elements. This also requires the ability to aggregate -unconnected" behaviors, con-

nections. and containers as well.

Even if redundant behavioral modes and structural elements are eliminated, there are

still opportunities to reduce the number of behaviors of a device. For example, the func-



Son of the heart in the cardiovascuiar system is to pump blood between :ne en,s ,i" re

heart. However, consolidation produces qualitatively different pump behaviors for each be-

3 havioral mode of each component of the heart. Also. each pump behavior begins from i

chamber of the heart. instead of being between the connections. Recognizing that this

group of pump behaviors can be abstracted into a single pump behavior requires a number

3 of steps:

" There are pumps between the container and both external connections.

3 * The allow behavior between the external connections is one-way

" The container is relatively unimportant in comparison to the pump behaviors.

3 i.e.. the pumps can move the substance through the container in a "short"

period of time. The idea is that over a long enough period of time, the effect

of the pump behaviors is more important than the storage function of the con-

utainer.

This "abstraction pattern," if applicable, simplifies the behavioral description by ignoring

3 the capacity of the container. An additional pattern could be specified to abstract a con-

tinuous pump from a repeating sequence of pumps:

3 If the pumps occur over two or more behavioral modes, if a pump can be

abstracted for each behavioral mode, and if there is a potential repetition of

mode changes (via c/ange mode behaviors), then a single pump can be

3 hypothesized.

With sufficient summarization and abstraction facilities, such as the ones suggested

above, consolidation would be applicable to a much larger set of devices.

3 5.4. Behaviors

3 The most serious problem with the types of behavior is the inability to represent ac-

tions at a distance., such as gravity and magnetism. Actions at a distance require causal

3 patterns that use no structural relationship at all. For example. gravity at any point

creates a pump mass behavior everywhere. What is needed is a new type of behavior, cor-

3 responding to action at a distance, and a globally applicable causal pattern like:

!



An action at a distance and any path causes a pump behavior

However, such an inference pattern would be untenable with any of the summarnzatuon and

abstraction features currently within our framework, as well as those just discussed Th;i

is because consolidation assumes that effects propagate structurally. i.e.. that internal -

ments can only be affected through external connections. One solution is to make con-

solidation a two-pass process in which the first pass would perform inferences that ar! e

from actions at a distance, and the second pass would perform consolidation as usual

That is. the behavioral description of a :evice needs to be preprocessed to take care of ef-

fects that do not depend on structur- nnectedness.

A less serious problem is that create and destroy behaviors are sometimes inconvenient

to use. Real Physics has conservation principles that disallow creation destruction of a

substance without a corresponding destruction, creation of another. This seems to imply

that a single "transform" primitive should replace create and destroy. However, Naive

Physics should not be beholden to such principles. Otherwise, imaginary devices such as

perpetual motion machines would not be representable.

Nevertheless. it would be convenient to be able to compose new types of behavior out

of the primitive set, so that "transform" could be defined as a combination of create and

destroy. This would better represent the often close relationship between these two be-

haviors without mandating universal conservation principles.

A more mundane improvement to create and destroy might be to have a single primi-

tive that represents creation by a positive rate, and destruction by a negative rate. This

would better model reversible processes. such as creation destruction of heat by adiabatic

compression. 14

14 When a fixed amount of gas is compressed, it gains heat. When it is decompressed, it lose,
heat.



5.5. Filtering Information

In the implementation of our examples. we chose to represent certain phenomena and

omit others For example, although a light bulb produces heat when it produces light. we

chose not to represent this fact because reasoning about heat was not the point of the light

bulb examples. While this omission was a matter of convenience as far as these examples

were concerned, it is important to avoid reasoning about phenomena that are extraneous to

the situation. All components, for example. contain heat. All fluids can contain dissolved

substances. All spaces allow material to move through them. However. no consolidation

process (or Naive Physics reasoning process for that matter) can afford to reason about all

the physical phenomena and all the paths that can interact in a situation. Why. then.

represent certain structural elements, and ignore others? Why reason about certain be-

haviors, and not others?

One answer is that consolidation must be responsive to the goals of whoever is using

consolidation. Our goal, in the light bulb examples, was to show how consolidation could

reason about the light bulb's create light behavior, so as a consequence, consolidation

should reason about light. While this answer is unsatisfactory because it passes the

problem to other reasoning processes, it affirms an active role for a rational agent who

might consider consolidation as a means to solve a problem. The agent must recognize the

elements and structure of the situation and decide which of them are important to reason

about in light of the agent needs to know. Functional representations of devices might be

useful for determining this kind of information '5, 15, 29!.

6. Conclusion

Consolidation is possible because behavioral descriptions, as we have represented them.

are composable; certain structural combinations of behaviors give rise to additional be-

haviors. These causal patterns also form the basis for additional reasoning about behavior.



The causal patterns index into knowledge about the behavior of substances The beha%,riL

description of composite components can be simplified by selecting those behaviors that

form the external description of the composite behaviors and by grouping the containers

and connections that a behavior goes through. Dependencies between behaviors might be

satisfied by inferred behaviors or might need modification because of inferred behaviors.

Consolidation is only one of the reasoning methods of Naive Physics. The discovery

elaboration. and integration of these reasoning methods are important goals of Naive

Physics research. Our primary contribution is the discovery of a process for performing

consolidation of simple devices. We have also discussed how our current framework fur

consolidation needs to be extended for reasoning about more complex physical situations.
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3 A Critique of Qualitative Simulation
from a Consolidation Viewpoint

Tom BYLANDER

AbS -To understand 0comomnse reasoning we ned to discover sions about likely behavior can still be reached without the
MWt kinds Of Problems A Commomnse MIne should be a to solve, expense of formulating and running a quantitative model.
whi th resoner needs to have in order to solve thiose problems, and the See Gentner and Stevens [12], Bobrow [11, and Hobbs andreltionshi among the valets kin d ci k prbe sovn ab -rie. -hI ler einses loot arios peofng qasove abiiiesMw Moore [131 for a number of articles on qualitative rea-
the beavior of physical ntmmon The of dt me&od perform quala. sorting.
ave sinadetloa. whc deteranms th behavior of a situation by a qumlk- One kind of qualitative reasoning is qualitative simula-
tive version of mulsafo methods. "h ote method is called c tion (QS) [61,[101,115]. Like its quantitative counterpart, ai do, w derives the ebehavor of a us by omposing h description of the situation is used to determine the rele-of the siontion's compmets. TIU wod lon tlo q"alitad" simladon

and consolidaion work on differe pablems of qutmive reasoing, and vant parameters (or quantities) and constraints of the
that differences and similarities lesd to several impllatdos abon situation, a simulation is performed, and the results are
their role in qualtaive remonng. transformed into interpretations of the overall behavior.

Unlike quantitative simulation, specific values are not
I. INTRgODUCTION usually assigned to quantities, but only their ordinal rela-

A RECURRING CRITICISM of expert systems is tionship to important constants and other quantities are

i that their knowledge is too "shallow." The criticism expressed Also, constraints might be qualitatively stated,

is directed at several problems that arise when the deci- e.g., proportionality between two quantities might be as-

sions made by these systems are based on associational serted, but not necessarily a specific function. QS then

* knowledge (e.g., the probability of a malfunction given a tracks the situation from one qualitative state to anotherdatum) instead of a model of the domain (e.g., a physcal by predicting the changes in the ordinal relationships ofdescription that causally relates the malfunction and the the quantities based on the constraints of the situation.Ii dat) thot cadoain mel, t m We have proposed a different method called consolida-datum). Without a domain model, expert systems cannot fo 3,4,wihi yeo ulttv nlss h

reason about the assumptions underlying their knowledge, tion [3],(4], which is a type of qualitative analysis. The
making errors more likely, behavior of the situation is discovered by inferring the

The reason why association-based systems continue to behavior of selected substructures from the behavior and

abound is because robust models for reasoning about interconnections of their constituents. Successive applica-

complex domains do not yet exist. One area of artificial tion of this process on increasingly larger substructures

intelligence (AI) research that is directed towards the goal results in inferring the overall behavior of the situation.

* of more robust models is qualitative reasoning, the ability QS and consolidation appear to be rival methods for the

to make decisions and solve problems based on qualitative same problem. We shall show, though, that they apply to

data and models. The goal of qualitative reasoning is to two different problems of qualitative reasoning. Thusa achieve predictive and explanatory power similar to that of neither QS nor consolidation fully address the problem of
quantitative and analytical models while avoiding the need qualitative reasoning about physical situations. The com-
for precise formulations of problems and computationally monalities of the two problems leads to interesting impli-

intensive methods. For example, in the situation where a cations about the role of consolidation within a complete

flame is under a pan of water, one can predict that the theory of reasoning about behavior. Most of the implica-
water will probably heat up and boil. Even though only tions concern inherent limitations of QS and how consoli-

rough details of this situation have been described, conclu- dation can handle them.
rsdOur discussion will be divided as follows. First, we

Manuscript received July 15, 1937; r Janary 4, 19811. This briefly descAbe three methods of qualitative simulation.
research is suppored by the Air Force Office of Scientific Research Next, we describe their commonalities and their dif-
throuah AFOSR 37-0090. and grant NIHR OOAOE 82048-02 from the ferences. The most important commonality is their agree-
National Institute for Handicapped Research. This paper is an -"paned ment on the type of problem that qualitative simulation
and revised version of the one that appeaed in the 19835 Procrrdnu of
1e Inreaioal Confer e o, Cybemrics ow Socet. solves. Then, after a brief description of consolidation, we

T. Dylander is with tbe Laboratory for Arbticial Intelligence Research, characterize the differences in information processing be-rn. Department of Computer and Information Science, Ohio State Univer- tween consolidation and qualitative simulation. F'maly,I sity. Columbus, OH 43210. tencnoiainadqaiaiesmlto.Fnly
Iy Lo Number 195. these differences lead to several implications about the role
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&YLANDER: CIRITIQUE OF QUALITATIVE SIU.ATON FROM A CONSOUDATION VIEWPOINT

of QS and consolidation for reasoning about physical
phenomena.

II. • TmE MErHODS OF QUALITATVE SMULATION .2 '
Our discussion is limited to the three most well-known

qualitative simulation (QS) methods, that of de Kleer &
Brown [6], 171, Forbus [101, [11], and Kuipers [151, [161, na,-m-e
[171. Other qualitative simulation methods, such as that of
Williams [20] and Weld 1191, fundamentally agree with the I
above methods, and so are not covered.

As part of summarizing the basic ideas and methods of
each method, we illustrate how they apply to the example
situation pictured in Fig. 1. In this situation, a flame is
under a pan that holds some water. Both the flame and the Figl. 1. Example situation of flame and pan containing water inside of
pan are located in a room. For each method, we describe room

how they infer the possibility that an equilibrium occurs,
i.e., that the rate of heat going from the flame to the pan quantity space) were desired, it would be expressed by
becomes the same as the rate of heat going from the pan to xg" where Q refers to the quantity space. Thus. thethe room.' "[ '~"weeQrfr ote uniysae hs h

Tqsythe fo g Iconfluence states that X must have the opposite sign of Y.The term "quantity" is frequently used in the following If X is actually 3 and Y is actually -2. this confluence isdiscussion, so a description of quantiies is in order. Quan- satisfied since positive plus negative is "indefinite," whichties are used to represnt the real-valued parameters of includes zero. Confluences can also be applied to deriva-the QS. At a specific poin that situation has a particular real value t tives of quantities (aX denotes [dX/dt], the qualitativeFquaitawitie reasitation, hug aartculway eai a derivative of X), so one can specify how quantities moveFoquaitati mactlnig, fhobidden. a sea g a up or down in relation to other quantities. Confluences canquantity an actual number is forbidden. Instead anportant refer to any number of quantities or derivatives, and whilereal numbers and real intervaln called a quantity space it is preferred that confluences use only simple addition or(QS) 9, are identified as relevant to the quantity, and the subtraction, other operations are allowed. ii
quantity's relationship within the quantity spaceNo intelligent agent can be expected to
value." In addition, the quantitys direction of change. the set of confluences for each situation that it will experi.

(up, constant, or down), Le., its qualitative "derivative," is ence, but it would be reasonable for an agent to know the
maintained for the purposes of the QS, in order to antic- behavior of several kinds of parts. Thus, the agent will
ipate what the next value of the quantity will be. Quanti- need to describe a situation in terms of its parts, to
ties can also be used to represent qualitative derivatives so describe the structure of a situation and the behavior of
that the second, third, etc. derivatives of a quantity can be each pan of the structure. For de Kleer & Brown, the U
expressed. elements of a situation mapn disjoint and

Each of the following descriptions is necessarily too ideal conduits between the components ndidel cnduts etwen hecomponents, called connec- ,
brief to completely describe each method, so much Sim- tions. Each component is modeled by a set of quantities. 3j
plification has taken place. However, they should be accu- and a set of qualitative states. Each qualitative state is U
rate enough for the purposes of this paper. described by a condition that specifies when the compo-

nent is in the qualitative state, and a set of confluences 1
A. The Confluences of de K/eer & Brown that hold during the qualitative state, Le., the confluences

This method models behavior using confluences. describe how the component behaves in that qualitative
Roughly, confluences are qualitative equations involving state. Confluences and conditions on qualitative states
quantities and their derivatives. For example, the con- only reference the component's quantities.
fluence The connections indicate where material is permitted to

[X] +[Y] -0 flow from one component to another. The components of
a connection specify which of their quantities are associ- i

indicates a constraint on the qualitative values of the ated with the connection, and the connections are used to
quantities X and Y. This confluence does not mean that X determine additional confluences that constrain these
equals - Y, but asserts that the qualitative sum of their quantities. These confluences are used to enforce qualita-
values must "include" zero. The expression "[ xr evaluates tive version. of general conservation laws, and provide the
to the qualitative value of X, in this case, positive, nega- only means for interaction between components.
tive, or zero. If a different set of qualitative values (i.e., The QS is done by a method called envisioning, which is

a combination of constraint satisfaction and differential 3
he physc proemsecs or dat tanple outPk- perturbation. It is important to note two aspects of envi-

evaporantion or is am rpmmw& sioning, one concerning the prediction of a temporal se- I
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TABLE I
To TEM)PORAL SEQUENCE OF SELECD VALUES IN ENVISIONING

Quantities qI 2  t

'T,•I0., lI 1 ._..o Q,_, 0 + +

Q,-Q - _ -

0, -, >T.<cT >T,.<T1
-- a e +

conecuo, .__.d the amount that flows from the other component. The
IQ1,]- aamount of the flow has the same sip as the difference inIQl o u IT K & temperature.3

Fig. 2. Example model using De Klee & Brown's method. Suppose that the pan and the room initially have the
same temperature, which is lower than the flame's temper-

quence of events, and the other with the production of a ature. Taking the temperature of the flame as the input

causal explanation for the values of quantities at each disturbance (imagine that it has been just turned on), then

moment of time. For predicting the sequence of events, from the confluences of the connections, heat movement

simple satisfaction methods are sufficient, i.e., begin by from the flame to the room and pan can be inferred (e.g..

determining values for all the quantities that satisfy the [T - T] is positive, causing [Qf-..] to be positive and

confluences, determine which quantity or quantities will [QOP-.] to be negative). Since the room and the pan are the

next deviate from its current qualitative value, and repeat, same temperature, there is no heat flow between them

solving the confluences (which might have changed be- (TP - TA is zero, so [Q,_-,] and [Q,-._] are zero). Then

cause of a change in qualitative state) for the new values. 2  from the pan's confluence, the pan's temperature must be

Envisioning, however, does not simply satisfy the con- Increasing ([Q,-1J is negative, and [ is zero, making

fluences. Instead, a quantity deviation is selected, and its aT positive). These values are shown in column t, in

effects are propagated from component to component. If Tale I.

there is not enough information to determine all the quan- In the next "episode" of time (t 2), the pan's temperature
tities' values, then an assumption about the value of a is higher than the room's because the pan's temperature is

quantity is made based on heuristics that de, Kleer & increasing, thus heat flows from the pan to the room. It is

Brown have developed for explaining behavior, and the now unclear how long the pan's temperature will continue
propagation continues. The path of the propagation is to increase, and it appears possible that the pan's tempera-

used to derive a causal explanation of the quantities' ture might start to decrease (since [Q,-f] is negative and

values. [Q _] positive, any value of aT, satisfies the confluence).

For Fig. 1, the flame, the pan, and the room would be Ading more confluences can resolve this latter difficulty.

considered the components, and would have a connection Adding 8Q1 - 8T - aT2 to the connections' confluences

between each pair. The water in the pan is not represented predicts that both aQ,.. and dQ,... become zero when

directly, but by appropriate quantities associated with the a + aQ,... + 8Q,-,
behavioral description of the pan. Heat and temperature 0 to the pan's confluences predicts that the pan's tempera-

are also not directly represented, but each component ture stabilizes (3).
would have appropriate quantities for heat and tempera- B T Q P of Forbus
ture.

Fig. 2 is a simple model of this situation. Each compo- Forbus introduces a notion called qualitative process
nent and connection is associated with its quantities and (QP) to account for change and to explain why it occurs.
confluences. Each component has only one qualitative QPs perform a similar function as confluences as they both
state. In a more complete description, qualitative states specify behavior and interaction, but the way QPs are
could be used to indicate whether the flame was on or off, defined and applied is very different. First, we need to
or whether the water was boiling. The flame and room describe some of the things that QPs refer to.
have ideal models of unchanging temperatures (8 T - 0). Situations are composed of ind"viduals, predicates on
The temperature of the pan (T) varies with the amount of individuals, and relationships between them. Forbus does
heat flow between the pan and the flame (Q,-f) and not provide a specific set of relationships, leaving it to the
between the pan and the room (Q,_-,) (represented by the implementor to determine what relationships are relevant.
pan's confluence). Each connection specifies that the An individual view is a special kind of relationship, which
amount that flows from one component is the opposite of

'in this confluence, the brackets endos the subtraction operation.
which indicates that the subtraction is performed on the real values, not

This description is ovenimplified because theme might be ambiguity. the qualitative values If qualitative values were used and both tempera-

A set of confluences might have many possible solutions and many tures were poitvee nothing could be concluded about heat flow
different quantities might be the next to "deviate." because positive min= positive is indefinite.
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consists of a set of individuals, a set of conditions that :T.,7.o,40;&M M, .W-
determine whether the individual view is applicable, and [ m-,.o,,11, a
the relationships that follow from them. An individual
view is used to " view" a group of objects as a whole. For .4. EaamplemodelusigFobus'smethod.
example, a body of liquid and a container are individuals;
liquid in a container satisfies the contained-liquid individ- JboR SEQUENCE OF SELCTABLE S IU AVII N QUATATVE PROCS
ual view. Similar to the components and connections of .T t2 E
de Kleer & Brown's method, each individual and individ- -,__ _ _ _ _ _ _

ual view is associated with a set of quantities. Heat-flow flame to water active active active
Processes name to room active active activeThe only kind of behavior description that can be di- water to room inactive active active

rectly associated with an individual or individual view is a f
qualitative proportionality between two of its quantities. flom rate +fDame to water + ,-.-

For example, X cQ Y denotes a qualitative proportionality Quantities flow rate
that indicates that X is dependent on Y. cc. indicates a watu to room 0 + +D(heat(water)) + +0
monotonic increasing relationship and cr._ indicates a -, >+T,,<T >r,.<
monotonic decreasing relationship. A change in X does
not necessarily imply a change in Y.

QPs are the mechanism that determines when changes than the temperature of "dst." The relations section speci-
occur. Unlike confluences, a QP is not part of an individ- fies additional relations that hold while the process is
ual's behavioral description, but is a general rule that active. In this process, a quantity called "flow-rate" is
indicates the conditions among a group of individuals that created which is greater than zero. The influences section
cause an influence, an increasing or decreasing effect on specifies the effects on quantities. In this case, there is a
the value of a quantity. For example, I+(X, Y) is an negative effect on the amount of src's heat, and a positive
influence that specifies that X is increasing at rate Y. effect on dst's heat. The amount of this effect is the
Neither an influence nor a qualitative proportionality amount of flow-rate.
guarantees that a quantity actually changes in a certain The situation in Fig. 1 can be modeled with the flame,
direction since there might be several influences or propor- the room, the pan, and the water as objects with heat-paths
tionalities that affect the same quantity. The actual change between the flame, room, and pan (see Fig. 4). The flame,
in a quantity is the sum of the effects on it. room, and water each has quantities of heat and tempera-

The QS works as follows: find all the individual views ture. The temperature of the water is proportional to the
and QPs that are active (whose conditions are true); de- amount of its heat. Again, assume that the temperature of
terrine the effects speIfied by the influences of the QPs the room and the flame remains constant, the flame is
and indirectly by any proportionalities; determine what hotter than the room, and the room and water are initially
the change(s) will be, viz, a quantity or derivative changes the same temperature. We assume that heat-paths to the
-to a new value, a new QP becomes active, or a previous QP water are inferred from the contained-liquid individual
becomes inactive; and repeat. view.

For Fig. 1, the primary QP is the heat-flow process Initially, two heat-flow processes are active, from the
displayed in Fig. 3. The individuals, preconditions, and flame to the room arJ from the flame to the water (refer
quantity conditions sections in the figure specify the condi- to Table II). The amount of the water's heat increases
tions for a heat-flow process to be active. The individuals (D(heat(water)) is positive), which because of the propor-
of a heat-flow process are two- objects that can store heat tionality, implies that the water's temperature increases. In
("src" and "dst"), and a heat-path that connects them the next time "interval," (t2), the temperatures of the
("path"). The preconditions section specifies that the path water and room are different, so a heat-flow process from
be heat-aligned (meaning that there is nothing blocking the the water to the room becomes active. Now the same
flow of heat along that path). The quantity conditions problems as before reappear. It is questionable how long
section requires that the temperature of "src" ("A" is a the water's temperature will continue to increase (one
function that refers to the amount of a quantity) be greater heat-flow process has an increasing effect, and the other
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Fig. S. Example model using Kuipers's constrains. 4). In addition, Q,-_, is increasing (constraint 5), Q!_p
is decreasing (constraint 6), and Q.. is decreasing (see
Table III).has a decreasing effect), or whether it even decreases at a At the next time "point," the temperature of the pan

later point in time. To avoid the latter problem, the rises towards the flame's temperature. Q,-. is positive and
heat-flow process needs to be modified so that the flow-rate increasing and p1., is positive and decreasing, so will
is proportional to the temperature difference, and that the continue to decrease towards zero. When Q, becomes zero,
flow rate approaches zero as the temperature difference then T will be steady, which leads to steady values for the
approaches zero. With this modification, if and when t temper.ature differences and the heat flows.

derivative of the water's temperature becomes zero, then

the derivatives of all the flow-rates become zero, and the III. CoMMoN.sMs 'A D-FER NcEs IN
situation stabilizes.4  INFORMATION PROCESSING BETwEEN T E

C. The Envisionmen Method of Kwpers " QuLrrTArrv SDULATION METHODS

The three QS methods summarized above representKripers begins at a different point than either de Kda physical situations in remarkably similar ways. In particu-
oBrown or Forbus. Instead of modeling the individual lar, they agree that a certain kind of constraint is ap-
objects of a physical situation and showing how the device propriate for representing behavior and that some form of
model can be obtained from the structural relationships constraint satisfaction is needed for performing the simula-
between the objects, Kuipers directly represents the quan- tion. The three proposals differ on the relationship be-
tities of the situation and the constraints between them. tween physical situations and constraints, but there are key

The "structural description" of Kuipers's method con- points of agreement on the kinds of information that
sists of a set of constraints on a set of quantities. The qualitative simulation uses and produces. Many of these
constraints specify numerical relationships between the similarities and differences have beeA pointed out by
quantities. X- Y+ Z indicates that X equals exactly Y de Kleer & Brown [51 and Bonissone & Valavanis [2].
plus Z, and consequently, also indicates how their deriva-
tives are related, e.g., if Y and Z are increasing, then so is A. Commonalities of Architecture
X. Y- M*'(X) indicates that Y is a monotonic function
of X. Y - dX/dt indicates that Y is a qualitative derivative The different QS methods fundamentally agree on the
of .Kuipers's constraints are similar in spirit to de Kleer constraint architecture that underlies qualitative simula-
& Brown's confluences, in that both of them specify oper- tion, i.e., they agree on a general computational mecha-
ations on quantities and a method for testing qualitative nism in which constraints and conditions on constraints
equality. However, addition, multiplication, and other are used to specify what "computations" can take place.
arithmetic operators have their normal arithmetic meaning. Specifically, they agree on the following features.

Fig. 5 is a model of Fig. I using this method. One bit of One common feature is to model time in qualitative
notation needs to be explained-M indicates that when units, which we term "time segments." A time segment is
one quantity is zero, both quantities are zero. used to model an instant or interval during which the

Suppose again that the temperature of the flame is physical situation is in a particuL r state. The passage of
higher than the temperature of the room, and that the time is modeled by a sequence of time segments.
pan's temperature starts out the same as the room's. From Another common modeling construct is the quantity,
the constraints, there is heat flow from the flame and the which was briefly discussed earlier. For each time segment,
pan, but none between the pan and the room, thus the a quantity has a qualitative value, which is a real number
temperature of the pan is increasing (last constraint). Be- or a real interval. The change in direction of the quantity's
cause the "+" constraint allows inferences about deriva- value is specified by a qualitative derivative, which can be
tives in Kuipers's system, it can be inferred that AT_, another quantity. The possible values of a quantity are
increases (constraint 3), and AT-, decreases (constraint specified by its quantity space [9]. Quantities are used to

correspond to the parameters of a physical situation, and
'it is not clear whether Forbtus's system ca c irfm this the quantity spaces are used to specify the important

4flv U l it sy to 10 zbtt i c. be modified to do so. values and the intervals between the.L
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TABLE IV
SUMMARy OF COMMONAITIES Of AtCmnHcTnR IN QUALITATIVE SIMULATION M"MODS

Commona ity de Kleer & Brown Forbus Kuipers

time segment episode interval time-point
quantity quantity quantity parameter
QDC onfluence relation, influence arithmetic. functional and

and proportionality derivative constraintscondiion qualitative state individual views inequahty and

and processes conditional constraints

A third common feature is the use of qualitative dif- elements of the situation and the structural relationships
ferential constraints (QDC). A QDC describes an arith- between them. Kuipers does not represent physical struc-
metic relationship among a group of quantities and deriva- ture, but instead, directly lists the quantities and con. 
tives. The notation of a QDC can be that of an equation, straints.
such as the confluences of de Kleer & Brown and the De Kleer & Brown represent a physical situation by
constraints of Kuipers, or of a rule, such as the qualitative specifying its components, and th.- connections between
proportionalities and influences of Forbus. QDCs corre- the components. The behavior of each type of component
spond to the physical interactions within and among ele- and connection is represented by a set of quantities and
ments of a physical situation. QDCs. Their notion of qualitative state provides a way to

Different states of a situation might have different quan- attach conditions on QDCs. Interaction between compo- fl
tities and QDCs that apply to it. Conditions on the appli- nents and connections is modeled by equating quantities
cability of quantities and QDCs are another common of connections with quantities of the components that they
feature of qualitative simulation methods. All the methods connect. A few additional confluences are created to con- 3
provide for arithmetic tests on quantities. Forbus allows strain groups of connections in order to enforce qualitative
for additional conditions based on properties and relation- versions of conservation laws.
ships within a ph'ysical situation. Forbus represents a physical situation by specifying its

A fourth common feature is the process of qualitative individuals and their properties and relationships. Forbus
simulation. It proceeds by performing the following steps does not provide a primitive set of relationships, but on
(not necessarily in sequence) for each time segment. the basis of his examples, connection and containment are

* The physical situation is mapped into a set of quanti- included as relationships. Each individual specifies its

ties and a set of QDCs over those quantities. The quantities and proportionalities. Individual views and

initial situation specifies the values of some of the qualitative processes specify how groups of individuals

quantities. interact under certain conditions. Individual views can

Constraint satisfaction is performed to validate those specify additional quantities and proportionalities that

quantities that are bound, and determine the possible apply to the individuals. Qualitative processes specify in-
values of quantities that are not. A failed constraint fluences and other relations that result from the process,
vndcales oqattis thysastae nnot .d such as additional quantities and changes to the structure
indicates that this physical state cannot occur. Any of the situation.
physical state that always leads to an impossible-to- Kuipers does not pr, is "to map from physical
occur state is also considered impossible to occur. structure to QDCs. Inst.ad, L. structural description"

o Differential perturbation (modifying quantities in directly specifies the quantities and the constraints of the
accordanc. with their derivatives) is performed to situation as a whole.
discover what changes in the qualitative values of s ol
quantities might happen next. These changes are used C. Commonality of Information Processing
to generate the possible states of the situation in the
next time segment. Despite these differences in representing physical situa-

The simulation ends when no more changes occur or no tions, some abstract points of agreement can be pointedThe imuatio ens whn n moe chnge occr o no out. All three proposals agree on the nature of the output

new states are produced (e.g., an oscillation repeats the ofi AS- temporals seqee of phy sates tha othe
samephyscalstats).of QS-a temporal sequence of physical states that the

ale p Ical smaizes thesituation goes through with an explanation of why it
Table IV summarizes the commonalties listed above happens 5 There are differences over what the output

and the terminology used by each method. includes (e.g., Forbus includes structural changes while the

others do not), and over what explanation is (e.g.,
B. Differences in Representing Physical Situtions de Kleer & Brown base their explanation on a special

How can a physical situation be mapped into the QDC
architecture? Each of the QS methods has a different 4n general, the ambiguity introduced by the qualiave representation -

answer to this question. De Kleer & Brown and Forbus and reasoning might lead to ambiguity about what sequence of states
first represent the physical structure of the situation, and occur, so be to accurate, the output is all the possible sequences of states.

then determine the quantities and QDCs based on the Also, each sequence generated should have an explanation. U
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constraint propagation technique). However, they all gen- X,"I ' , 49M . M S aIs P ,,
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IV. OUR CONSOLIDATON METHOD ,Gpa o 2- "o ,awP

TheOuCONsIDATION astrtua mFig. 6. Example causal patterns in cojsoidation.

The consolidation method uses a structural model simi-
lar to de Kleer & Brown's, adding an additional structural
relationship called containment. Things like water and ponents (either or both can themselves be composite corn-
heat are then modeled as substances that are contained by ponents), and then to infer the behavior of the composite
the components of the situation, or perhaps other sub- from the behavior of its subcomponents. Performing con-
stances. e.g.. water contains heat. solidation on increasingly larger composite components

Behavior is modeled by specifying the actions (loosely results in inferring the behavior of the whole situation. As
called behaviors) that are performed on substances. Possi- a byproduct, a hierarchical behavior structure is produced
ble types of behaviors include the following, that explains how the overall behavior is caused by the

SAllow. Permit movement of a substance from one components' behavior.
le Pto an o mer. oBehaviors of composite components are inferred based

place to another. on composition riles, called causal patterns, each of which
Pump. Attempt to move a substance through a path. describes how one type of behavior can arise from a
locExpel. Astructural relationship between certain types of behavior.
location. The existence of an inferred behavior is confirmed, and its
Move. Move a substance from one place to another. parameters. are determined using knowledge about the
Create. Create a substance at a location, behavior of the substance being acted upon. Roughly then,

* Destroy. Destroy a substance at a location causal patterns are used to infer aggregate behaviors, and

Each behavior specifies the kind of substance that is once a pattern is matched, substance-specific knowledge is
affected, and the location(s) (containers and connections) called upon to fill in the behavior's parameters. Fig. 6
where it takes place. Each behavior and location may-have illustrates several causal patterns. For example, the serial
a number of substance-specific parameters or quantities. allow causal pattern states that if two allow behaviors are
The value of a parameter may be real, but is not restricted in series, then infer an allow behavior over the whole path.
to be so, e.g., the "rate" of a move signal behavior might Knowledge about the substance involved might be used to
be "on" or "off." A quantity may refer to parameters of determine parameters such as resistance.
other behaviors, indicating that the behavior is dependent The components of Fig. I would be the flame, pan, and
on other behaviors, e.g., the amount of the create light room, which would all be connected to one another. The
behavior of a light bulb is dependent on the rate of a room and flame can be modeled as containers of heat (or
to-be-inferred move electricity behavior through the light containers of some other substance that contains heat)
bulb. with expel heat behaviors (see Fig. 7). The pan contains

A component is modeled by specifying its structure, i.e., water, which in turn contains heat and has an expel heat
its containers and potential connections to other compo- behavior. The temperatures of the flame, water, and room
nents, and the behaviors which take place within that are represented by the amounts of the expel heat behav-
structure. A component may have several behavioral iors. Each component has allow heat behaviors between its
modes, each of which is associated with a different set of connections and containers.
behaviors. Change mode behaviors indicate the conditions Consolidation infers that there are move heat behaviors
under which one mode changes to another. between all of the components with the amount of move-

Consolidation gets its name from the processing that ment proportional to the difference between temperatures
this method proposes. The major processing sequence is to (amounts of the expel heat behaviors). The reasoning that
instantiate a composite component consisting of two com- infers heat movement between the flame and the pan is as
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WOW chavnohstto the difference of the amounts of the original e'pel
aspotheatbehaviors.

The other move beat behaviors (between the flame and
host the room, between the water in the pan and the room) are

co1 oninferred in a similar manner.

V. DIFFERENCES IN INFORMATION PROCESSING BETWEEN
CONSOLIDATION AND QUALITATV E SIMULATION

Consolidation, unlike any of the QS methods, does not
Fi&. 7. Example model us*nsidaotio. produce a temporal sequence of physical states as its

output, yet each method claims to derive the behavior of a
follows. situation. Each method starts from similar models of the

situation, and makes inferences about behavior, so how
1) The serial allow causal pattern is used to infer an can the final result, conclusions above the situation's be-

allow heat behavior between the flame and the pan: havior, be different? Our answer is that consolidation
allow heat between the "heat container" of the provides a different sort of conclusion about behavior then

flame and the flame-pan connection (behavior of QS does. QS and consolidation solve two different prob.-
flame) lems.

allow heat between the flame-pan connection and
the "heat container" of the water (behavior of A. Two Kinds of Behavior
pan)

, allow heat between the heat containers of the Part of the confusion comes from the fact that "behav-
ior" is an ambiguous word, and that QS and consolidationflare, iind water.

2) The propagate expel causal pattern infers a p p pinpoint two of its meanings. This distinction can be seen
b)Teprpaatbeo beeeaus aten theflameanfee p in the differences between the behavior that is input to QS

eeheat voro ete thefl tan the an: and the behavior that QS outputs. The behavior that QS
(behavior of flame) outputs is a temporal sequence of states that are predicted

to occur in the physical situation.' We use the term
allow heat between the heat containers of the 'actual behavior" to describe this sense of behavior.

flame and water (inference 1) The behavior that is input to QS is somewhat harder to
pump heat from the heat container of the flame characterize. A QDC does not predict a temporal sequence

to the heat container of the water. of states, but it does restrict what states can occur. Al-
The amount of the pump behavior is proportional to though a single QDC is not sufficient to assign qualitative
the amount of the expel behavior. o values to quantities, it does assert how the quantities affect

3) The include expel causal pattern combines the just one another. This kind of behavior is not a prediction of
inferred pump heat behavior with the expel heat what will happen, but can be used for prediction if ad-
behavior of the water. ditional information is given. We call this sense of behav-

expel heat from the heat container of the water ior "potential behavior."
(behavior of water) r"ptnalbhio.The input and output of consolidation also do notpump heat from the heat container of the flame to describe a temporal sequence of states, but are concerned
the heat container of the water (inference 2) with the actions (types of behavior) that occur in a physi-
pump heat from the heat container of theflame cal situation. The representation is primarily about the

to the heat container of the water, incorporating structures where these actions take place and the sub-
effects of the expel behavior, stances that are being acted upon. For example, allow

The amount of this pump behavior is proportional to behaviors describe which paths permit movement of which
the difference between the amounts of the expel substances. The parameters of actions provide an ad-
behaviors of the flame and water. ditional level of detail. For example, the move heat bebav-

4) The pump move causal pattern is used to infer a ior between the flame and the water in the pan does not
move heat behavior between the flame and the water. specifically assert when heat moves, but that the situation

pump heat from the heat container of the flame to is ripe for heat movement to occur, and that the rate of
the heat container of the water (inference 3) heat movement can be calculated if some other facts are

allow heat between the heat containers of the known, in this case, the temperatures of the flame and
flame and pan (inference 1)

-move heat between the heat containers of the water. Even if these temperatures were known at a given
flame and pan

The rate of the move behavior is proportional to the 'More tha one temporal Sequence of states might be output because
amount of the puwp behavior, which is proportional of Ambiguity; uvatheless, QS attempts to predict what will happeiL
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i instant, more information is needed to determine whether would say that understanding behavior means being able
the objects' temperatures will increase or decrease. Other to predict events and determine temporal relations be-
external sources of heat (eg., the room) will affect their tween events. A model of behavior is useless unless it can
future temperatures, so future temperatures and heat flow be used to predict what happens.I cannot be predicted without taking into account the entire The consolidation side would grant that determining
situation. The move heat behavior is an indication of what what happens is important, but would note that QS works
potentially can happen (heat flow), and points to other because the elements of a situation are well understood,I information on which this potential is dependent (tempera. i.e., QS is given a model of their potential behavior.
tures). Thus, the types of behaviors of consolidation are However, QS doesn't provide a similar understanding of
also a description of potential behavior, rather than actual the situation because it doesn't produce a model of the
behavior. situation's potential behavior.

Both sides of this "argument" miss a plausible com-
B. The Information Processing Tasks promise. Neither task incorporates a complete understand-

ing of physical behavir, e.g., neither task takes on the
The information processing task of a problem is a problem of designing physical devices. Understanding,

functional specification of the problem in information then, does not consist of being able to solve a single
terms, i.e., the information that the input and output information processing task, but in applying a range ofE represent. This specification is part of what Mars calls the problem solving abilities to complex problems. QS and
computational theory of an information processing task consolidation can be viewed as different modalities of
[18]. Above, we identified what the behavioral inputs and understanding behavior. For some problems, QS might bei outputs of QS and consolidation are, so the tasks can now the primary modality, while in others, consolidation might
be specified. be, while still yet others, both QS and consolidation might

The information processing task of de Kleer & Brown's be secondary, perhaps not even needed at all. Sections
and Forbus's version of QS is: VI.D and VI-E look at two aspects of understanding:3 input: physical structure of situation, and knowledge representation and causal explanation.

potential behavior of elements
output: actual b-.havior of situation VI. IMPUCATIONS OF Tim DiFFERENcES INI For Kuipers, the task is: INFORMATION PROCESSING

input: potential behavior of situation The differences in the information processing tasks be-
output: actual behavior of situation tween QS and consolidation can be used to further under-

The common feature is that all versions of QS go from stand the QS and consolidation method.

' potential behavior to actual behavior. De Kleer & Brown A. Consoliwion Does Not Need Initial Conditions
and Forbus make more commitments than Kuipers con-
cerning the composition of physical situations, and how Suppose that in Fig. 1, no initial conditions (ini.
behavioral knowledge is associated with their structure, tial values of quantities) were known, but some state-

For consolidation, the information processing task is: ment about the situation's behavior is still desired. Without
initial conditions, QS is unable to start. The best that

input: physical structure of situation, and could be done would be to enumerate all the possible
potential behavior of elements initial conditions and perform QS on each possibility. An

output: potential behavior of situation enumeration of initial states would be small in the simple
The key difference between QS and consolidation is that case of Fig. 1, but in more complex situations, there would
consolidation shows how descriptions of potential behav- be many possible initial states. Thus a better characteriza-
ior can be derived. Because actual behavior is more specific tion of QS's information processing task would be
than potential behavior, one would expect that qualitative input: physical structure of stuation
simulation would require more specific input or additional potential behavior of elements, andU processing time than consolidation would. In Sections initial conditions of situation.
VI-A and VI-B, we point out what additional information output: actual behavior of situation.
qualitative simulation needs and in Section VI-C we argue
that qualitative simulation requires a global reasoning pro- Consolidation can proceed without assuming any initial
cess for each time step. conditions, and in fact, the processing described earlier did

not do so. If we examine more closely what some of the

C. Understanding Physical Behavior final results looked like (Fig. 8), it is not hard to see why
Wrthis is the case. Each quantity is defined not in terms of
What does it mean to understand the behavior of a specific values at specific moments of time, but in terms of

situation? The two tasks have different views, and would how it is dependent on other quantities. Thus if the waterI appear to argue against each other as follows. The QS side in the pan happened to be hotter than the flame, then the

M
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=W,,-,, fb.f,,Al C. Qualitative Simulation Is a Global Reasoning Process"wawmlc It" Iram Pai)i

4,-t ommo To perform the simulation for a particular moment in
time and to check if it has been done consistently, all the

,-,t,,-i, ,-- ,,--- elements of the situation must be taken into account. For
-- , ,, w,.,., example, the derivative of every quantity must be ex-

• .m.a.*-- .m P= amined to update the quantities' values. This is true no
o *~mol -lmm w 'Imm p) arni ~matter the number of quantities and QDCs the situation

Fig. 8. Some esult of consolidation in flame, pw. ad room exmple. model has. The nature of QS prevents a hierarchical
rate of heat flow from the flame to the water would be breakdown since any part of a situation is very likely to be

negative, indicating that heat would flow from the water to an open system, to which QS cannot be applied.

negame. Fig tat hesed fl o f o teto Integrating consolidation with QS might help alleviate
thethis difficulty. Consolidation could be used to determine
behavior that can be directly used to answer questions and the situation or subsituations,

tor otsimiparpssinldgQS- the ofnit1al stt *i a oeta e a of eer qiuantity o musituaex

and QS can then be applied to the result of consolidation.
known. In other words, even if a temporal sequence of states is the

Consolidation Handles Open Systems output, consolidation can be used to reduce theB apparent complexity of QS.
A similar problem for QS is deiving the behavior ofm

situations that are open systems, Le., there is interaction A Consolidation Places Additional Constrainu
between the situation and the outside world. Without on Representation
knowledge of what these interactions are, the value of each Both consolidation and QS have the same kind of input,
quantity that can be affected becomes indeterminable. so representations of potential behavior should be amen-
Enumeration of all conceivable outside interactions is not, able to both kinds of problem solving. From the consolda-in general, a feasible solution since the number, kind, and onoitfvewrpestaosshudaiiaete |

order of interactions a vary greatly. However, the ability omposibility of behaviors. The representations of the QS
to reason about open systems seems to be necessary for methods do not have this property.
understanding behavior since'most situations that an agent In de Kleer and Brown's representation, consolidation
could be expected to encounter are open systems, and would need to derive the confluences and quantities of
parts of situations are by efinitionfrom the onfluences and quanti-of this, our description of QS's information processing task costes fidvd components .mhe onfuens n qa ti-

ofe ofnformation components. The task is not as simple as
,oncatenating all the behavioral descriptions of all the

input: physical structure of situation, parts. Instead, there is a need to directly specify how the
potential behavior of elements, subsystem interacts with the outside world. Consequently,
initial conditions of situation, and an analysis of constraints would be required, so that all the
outside interactions. constraints that apply to the subcomponents are reduced

output: actual behavior of situation. to a more perspicuous set of QDCs that expresses the
composite's behavior. This is an open and difficult issue.

By providing a concise representation of potential be- Dormoy has discovered a substitution technique [8] that
havior, consolidation gives a solution to describing the can simplify certain kinds of confluences, for example:
behavior of open systems. If we changed the model of the
room in our example so its temperature could fluctuate, [W] "[(X]+[ZJA[ " (YZJ
and it had a potential "heat connection" to the outside, -[W] - [X]+[Y].
the result of consolidation would not be fundamentally
changed. The only difference is that the room could gain However, substitution is not promising as a general tech-

or lose heat through other interactions. Heat moves among nique. For example, suppose that [W]- [Y]+[Z and
the room, flame, and pan in pretty much the same way. [X1 - (Y] + [Z]. However, [W] - [X] does not follow be-

The refinement of QSs information processing task also cause if [Y] is negative and [Z] is positive, then W and X

leads to a clearer distinction between potential behavior can have different signs without any contradiction. This
and actual behavior. Ideally, potential behavior incorpo- difficulty in simplifying confluences would make it hard to

rates no assumptions about initial conditions or outside use consolidation on this representation.
interactions, while actual behavior must incorporate such The initial difficulty for consolidation with respect to

assumptions for reasons stated above. In practice, how- Forbus's representation is that composing behaviors doesn't
ever, several assumptions are made when the potential make any sense. Processes, not individuals, specify the
behavior of a real situation (Fig. 1) is represented (Figs. 2, direct effects that take place. The alternative is to use

4, 5, and 7), e.g., attributing two connections to the flame. individual views to specify composite components so that

Thus, it might be best to think of the actual vs. potential processes correctly apply to them, i.e., by giving composite
distinction as a continuum, rather than a binary choice. components the right quantities and relationships so that
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they satisfy the conditions of appropriate processes. Doing The analysis that consolidation provides holds only as
this requires something isomorphic to the causal patterns long as the components remain connected in the same
and the substance knowledge that consolidation currently way. If a connection (or a component, for that matter) is
uses. For example, to derive the voltage quantity for two created or destroyed, then much of the analysis will be
batteries in series, we need to know that the batteries and invalid and must be redone. This need for reanalysis would
the composite each has its own voltage quantity (a pump make consolidation poor on situations where the structure
electricity behavior is caused by two pump electricity be- frequently changes.
haviors in serial), and that in this kind of configuration, Currently, consolidation is dependent on dividing the
voltage is additive (the electrical knowledge that is invoked elements of a situation into components and substances. In
when the serial pump pattern is satisfied). So Forbus's some situations, this division cannot be strictly applied.
representation has no special advantages, and would actu- It is usually reasonable to model a light bulb, for example,
ally obscure the underlying regularity (the serial pump as a component, but to be able to reason about a ball
causal pattern). Another difficulty is when a process occurs colliding with the light bulb, the light bulb would need to
inside the composite component, e.g., heat moves within be modeled as a substance that is contained by the space it
the flame-pan composite. is in, and the ball is trying to get into the same "container."

Since the collision will probably affect the light bulb's
E. Consolidation and Qualitative Simulation Provide behavior, the two perspectives need to interact
Different Causal Explanations

Two kinds of causal explanation correspond to the two
senses of behavior defined earlier. QS emphasizes the VII. CONCLUSION
causality of temporality and propagation, i.e., the current In te previous section, we have stressed the merits of

_ state of the situation leads to te next, and the value of Intepviusciowhaetrsdtemrtsfstae qoanthsituhatnges t s e nextd the value of consolidation in comparison to qualitative simulation. To
one quantity changes (via some QDC) the value of another understand what was accomplished, the full context of the
quantity. Consolidation emphasizes the causality of com- discussion must be considered. Three methods of qualita-
position, i.e., the behavior of a group of components arises tive simulation and our method of consolidation have been
from the behavior and structure of the individual compo- summarized. We have argued that consolidation and
nents (see Iwasaki and Simon [14] for a third sense of qualitative simulation solve different information process-
causality). Another debate like the device understanding ing tasks. Thus consolidation cannot directly substitute for
debate could be promulgated at this point with probab qualitative simulation, e.g., consolidation cannot predict
the same result. Neither kind of causality is necessarily actual behavior. However, all the methods accept behav-
superior to the other, but their usefulness depends on the ioral descriptions in their input, and their output is about
particular problem to be solved. It is worthwhile to note behavior, albeit different aspects of behavior. It is possible
that there can be causal explanations of situations with that this difference is uninteresting, that perhaps wherever
unknown initial conditions and in open systems (consider consolidation can be used, qualitative simulation can be
two batteries connected in series). Consolidation can be used to achieve the same effect. Therefore to understand
used to point out this aspect of causality. the role of consolidation and the relationships between

F Caveats these tasks, we have shown where consolidation can play a
major role in qualitative reasoning: to analyze situations in

Currently, consolidation is not able to model all the which the initial conditions and/or outside interactions
phenomena that the QS methods are able to. Also, there are not known, to simplify the qualitative simulation of a
may be certain kinds of situations in which consolidation situation, and to provide a different perspective on causal-
would not work very well. ity. A consequence of this argument is that representations

Forbus's method is able to handle spatial reasoning that of potential behavior should facilitate consolidation in
is more complex than the connection and containment addition to qualitative simulation.
variety. For example, he can model, to a limited extent, Qualitative reasoning about physical phenonema re-
motion and collision of objects. Forbus can also model quires many different kinds of information processing
properties of material, changes in material, and changes in tasks. Qualitative simulation and consolidation do not
structure. Consolidation has not been extended to cover exhaust the ways that behavior can be inferred. For exam-
these phenomena. ple, neither process infers the behavior of components

One possible problem for consolidation is constructing a from the behavior of situations. Also, there are other
plan for composing components in a sensible way. We are information processing tasks such as diagnosis and design
developing general heuristics for making this decision, e.g., for which behavior is not the output. We need to char-
select composite components with as few outside connec- acterize the information that these tasks require, the
tions as possible. Also, domain knowledge could provide processes that can perform them, and the representations
additional heuristics. In many cases, this will not be an they use. We also need to integrate these processes and
issue because the structural hierarchy will be known in representations so that they can be effectively used to
advance, increase the power of proble,! solving systems.
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A Corrective Learning Procedure Using Different Explanatory Types1

Tom Bylander and Michael A. Weintraub
Laboratory for Artificial Intelligence Research
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Corrective learning is the alteration of a system's existing knowledge structures to produce the
correct answer when the system's existing structures fail by producing an incorrect response. An
explanation-based solution is to compare explanations of why the system produced its incorrect answer
with explanations of the correct answer. Explaining the system's answer would be trivial if a single
production rule concluded the answer directly from the data. However, the answers from the system we
are building will have uncertainty, and credit assignment will involve larger knowledge structures. The
problem we are working on is to see how different problem solving structures and underlying models -
and the different types of explanations coming from each - affect the learning process in the context of

i corrective learning.

Our work differs from most EBL approaches in the nature of the explanations the system will be
producing and using. The usual explanation-based approach is achieved by the construction of a proof
showing how an example is an element of some class. The proof can be used to generate a list of
sufficient conditions for the identification of some concept. The explanations our work involves can not be
construed in the same manner. The answers our system will generate allow for certain conclusions to be
inferred from the data, but these conclusions are probabilistic in nature and not definitive. As a result, our
system will not produce exact proofs about how some instance belongs to a concept. Instead, our system
will only be able to identify a probabilisbc relationship between a set of conditions and a concept.

The particular domain we are working in is pathologic gait analysis. Gait analysis is non-trivial. The
problem is to properly diagnose which muscles and joints are causing deviations in the gait cycle. For

example, patients with cerebral palsy, a disease affecting motor control, typically have several muscles
that function improperly in different phases of the gait cycle. The malfunctions in the case of cerebral
palsy are improper contractions of the muscles - both in terms of the magnitude and tirming of the
muscles - during the phases of the gait cycle. The problem of diagnosing which muscles and joints are
at fault is complicated by interactions between limb segments and attempted compensations by other5muscles. In addition, many internal parameters cannot be directly or even indirectly measured using
current technology. For example, EMG data is at best a qualitative measure of muscle forces [Simon82].

To perform diagnosis for this kind of problem, our system will consist of structured diagnostic

knowledge and a qualitative physical model of human walking. The input to the diagnostic system is the
information gathered about a patient by the Gait Analysis Laboratory at the Ohio State University. The

data is of three types: clinical, historical, and motion. Clinical data is the result of a physical examination
of the patient, and identifies the range of motion of joints by several physical tests. EMG information,

'This research is s&pported by grante 82048-02 from h National Ins*ute for Handicapped Research and 87-0090 from the Ar
UForce 1 e d.Sciaedl Rearch.
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identifying muscle activity, is also collected. An EMG is not collected on every muscle because of the
difficulty involved in attaching electrodes to certain muscle groups. Historical data includes information
about any past medical procedures or diagnoses. Motion data identifies the angular position of the
patient's joints during the different gait phases. This information is recorded for each plane of interest.
The output from the diagnostic system will be an explanation of the malfunctioning gait components so an
appropriate therapy can be prescribed. The problem solving structures we are using are based on the
theory of generic tasks [Chandra86]. The particular generic tasks involved in the system are abductive
assembly, hierarchical classification, and hypothesis matching, respectively used for constructing
composite malfunction hypotheses, selecting plausible malfunctions, and combining evidence for and
against malfunctions.

In [Chandra87], three types of explanation are identified with knowledge-based systems. These are:
(1) trace of run-time, data-dependent, problem solving behavior, (2) understanding the control strategy
used by the program in a particular situation, and (3) justifying a piece of knowledge by how it relates to
the domain. In our system, the first two types of explanation will be produced by compiled diagnostic
knowledge.

To show how the first two explanation types arise, consider the generic task of hierarchical
classification. To perform diagnostic reasoning, nodes in a classification hierarchy can be used to
represent general and specific malfunctions. During problem solving, the nodes are activated in a top-
down fashion and determine their applicability to the current case. Each malfunction that is considered is
evaluated by compiled knowledge that matches its features against the data. The confidence value of a
malfunction in the classification hierarchy is linked to the data that produced it. This is a type 1
explanation. An example of a type 2 explanation would be to describe why a malfunction was or was not
considered. For example, if the confidence value of a general malfunction is low, more specific
malfunctions might not be considered.

Type 3 explanations will be produced by the qualitative physical model. These explanations will
point out the atypical data that a suspected malfunction would explain, i.e., if the malfunction were true,
then the malfunction would be considered the cause of the data. In our system, the qualitative physical
model is being Implemented by qualitative differential equations [deKleer84, Kuipers86, which will be
used to determine how various influences such as muscles and body weight give rise to the observed
motion. The model will not be sufficient to Identify the correct diagnosis because each part of the
observed motion has several possible causes and because of the inherent ambiguity of qualitative
models.

The learning in the system will be fault driven, i.e., an incorrect diagnosis is used to focus the
learning process. The system, already possessing knowledge about the domain, albeit imperfect, gives
an answer to be verified by the domain expert. If the answer is deemed incorrect, the expert provides the
"correct" answer. The system must identify how the original answer differs from the correct answer and
infer why the expert's answer is better. The syster' must identify which parts of the problem solving
structure caused the incorrect solution, and then modify the structure appropriately.

Explanation of generic task structures (types I and 2) will be used to determine which knowledge
structures might be at fault Explanation of the qualitative physical model (type 3) will be compared to the
y 1 explanation to select the faulty structure, which might be decomposable into several smaller

I
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knowledge structures to be further searched. Once the specific location of an error is found, the type 3
explanation specifies what data should have been used and the other explanation types specify what
kinds of adjustmenrt In confidence values will result in preferring the correct answer over the incorrect
answer. The following procedure outlines our approach to this problem2:

1. Identify initial differences between the system's diagnosis and the correct diagnosis. These
differences indicate the sections of the problem solving which need reconsideration. Each
difference provides a point from which to focus the learning process. These differences
implicate not only the actual compiled knowledge structure that produced the bad judgment,
but also the set of decisions leading to the judgment.

2. For each difference, generate explanations of why the system reached its judgment.
Specifically, identify the data used in support of the bad judgment (type 1 explanations), and
identify the set of decisions leading to the judgment in question (type 2 explanations).

3. Find any commonalities between the explanations of the system's incorrect judgments.
Having identified how the incorrect judgment was produced, find any common search
strategy or data analysis used in judgments resulting in the set of differences. This step
involves comparing the type 2 and 1 explanations produced for each difference, and finding
the intersection.

4. Sort the set of commonalities and bad judgments in order of degree of potential effect on
correcting the answer if modified, e.g., if a common decison underlies two incorrect
judgments, then the changing the common decision may correct both problems.

5. Check consistency. For each element in the set of commonalities and bad judgments,
compare the type 3 explanation produced by the qualitative model to the type 1 explanation
of the judgment. (The qualitative model does not model the system's control structures, so
it does not make sense to include type 2 explanations in this co'mpason.)

6. Inconsistencies found in the type 1 explanation identify points to correct. Such
inconsistencies include: not using all causally relevant information, using data with no
causal connection, the sensitivity of some information for decision making is
overrated/underrated, etc.

7. Suggest modifications to overcome the inconsistencies. Generate alternatives to the
incorrect judgments consistent with the type 3 explanations. This step will focus on making
as few changes as possible to correct the overall answer. Each modification includes a
proposal of what the type 1 explanation should have been.

8. Select a modification. Choose an acceptable modification based on inconsistencies that
were generate

9. Repeat on underlying knowledge structures. At this point, the chosen modification indicates
how a set of judgments and their type I explanations should be changed. For each
judgment to be changed, the embedded knowledge structures that gave rise to the
judgment need to be modified to produce the correct judgment and type 1 explanation.

To illustrate some these steps, consider this oversimplified example. The system chooses
hypothesis h, with a rating of 8 out of 10 as its answer, and the correct answer rates h2 with a 6. The
question here is to decide how to modify the hypotheses' confidences - whether to increase them or
decrease them. The qualitative model will produce an explanation showing how h1 predicate nissed the
importance of some data item or possibly overrated itself by overweighting some supporting predicate, or
how h2 might have underrated itself by either underestimating the import of some piece of data or the
impact of some predicate. The modification to be selected should result in the rating of h2 higher than h1.

Much at this is afitedly vague, because ow reeewch is at an ewly adage.
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The learning component will choose a modification from the following choices: including/excluding a
predicate to be used in determining confidence in the hypothesis, lower or raise a hypothesis' confidence
(or both), or increase/decrease the importance of a hypothesis' predicate. This modification implies that
the decisions of underlying knowledge structures need to be changed; thus, these same steps will be
applied to them also.

Other work has explored corrective learning using complex knowledge structures.
SEEK [Politakis84 and SEEK2 [Ginsberg85j, for example, perform corrective learning on structured
collections of production rules. Both SEEK and SEEK2 look for statistical properties over a set of cases
to discover and modify incorrect rules. This approach assumes that the correct conditions and conclusion
for each rule have been identified, but that the logic combining these conditions or the confidence value
produced by the rule might not be correct. By adopting an explanation-based approach instead, we

intend to provide the capability to alter the conditions in a rule (or larger knowledge structure). Also, an
explanation-based approach might lessen the the need for the kind of statistical analysis done by the
SEEK programs.

Another example is ACES [Pazzani87], which uses device models for diagnostic reasoning and EBL
ACES uses a mathematical model of the device to confirm or reject fault hypotheses proposed by
diagnostic heuristics. Rejected hypotheses cause the modification of diagnostic heuristics based on the
reasons the model rejected it. Like ACES, our problem is a diagnostic one, but our system will differ in
that our "diagnostic heuristics" will involve more complex prr tm solving structures and our device
model will be qualitative and will be unable to categorically confirm or reject hypotheses.

Also, both SEEK and ACES assume that only one fault exists. As previously noted, this assumption

does not hold in our domain. In fact, a CP patient usually has more than one malfunction.

In this paper, we have outlined our research plan to explore EBL techniques using explanations

produced by complex problem solvers. Analysis of pathologic gait is complex because of multiple faults,
the interactions between them, and the compensations for them. The analysis itself is the result of a
complex problem solving process involving many different problem solving tasks. Several different types
of explanations exist, and we plan to investigate how these different explanatory types impact an EBL
approach to corrective learning.
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1. Al as a Science of Intelligence

Theoretical and empirical work in artificial intelligence (AI) has now gone on for close to thirty

years, but few minds have been changed about most of the central philosophical issues surrounding

mind. People who asserted in the early days of Al that machines canaot think still assert that

machines cannot think. People who believed that machines cannot be conscious or feel pain still

believe that machines cannot be conscious or feel pain. Even with respect to the idea that com-

putation over discrete symbol systems, the so-called "symbolic paradigm" (Smolensky, 1988), is a

pretty good basis for capturing intelligence -- by far the dominant paradigm in Al and the reason

Al is closely associated with computer science -- there are recurring doubts. In addition to the

people out there who have always felt we need holograms or chemistry for a proper account of in-

telligence, we now have a connectionist school that rejects the symbolic paradigm for intelligence.

In spite of all this, work in Al has steadily attracted its share of philosophers and psychologists --

not to speak of people who see the commercial possibilities of mechanized intelligence -- who feel

that Al is exciting and important both in its overall view of intelligence as well as in some of its

concrete achievements.

Minds and Intelligences. Let us make a useful distinction which might eliminate at least some of

the arguments about AI: the distinction between "intelligence" and "mind." Many discussions on

the philosophical implications of AI-- e.g., the numerous articles of the 50's and 60's on minds and

machines-- equated the question, "Can machines be intelligent?" with "Are minds machines?".

There is a useful alternative to this equation of mind and intelligence, viz., that intelligence is a

tool of the mind. In fact there is a tradition in Hindu and Buddhist philosophies which embodies

precisely such a distinction: it views intelligence as an internal sense organ much as sight is an ex-

ternal sense organ. As a sense organ, it interprets the world and makes the information available to

the "watcher." My aim in making this distinction here is not to stake an ultimate position about

the irreducibility of mind to mechanism, but merely to remove from discussion some elements about

which Al as a technical discipline has nothing to say at this time. Even the most rabid mechanist

within Al will need to admit that while Al may have impressively useful things to say about cog-

nition and perception, it simply has nothing technical -- at this point -- to say about conscious-

ness, feelings, will, etc. Thus from a technical viewpoint, I want to take intelligence, not mind, as

the current subject matter of AL. If we have succeeded in taking vitalism out of our limbs and

cells, we hope similarly to take mysticism at least out of intelligence.
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Paradigmatic confusion in .41. In spite of what I regard as significant achievements of Al in 3

beginning to provide a computational language to talk about the nature of intelligence, the not so
well-kept secret is that Al is ifiternally in a paradigmatic mess. There is really no broad agree-
ment on the essential nature or formal basis of intelligence and the proper theoretical framework for
it. I
1.1. Intelligence as Information Processing on Representations I

However, let us first seek some unities. There is sometlhing that is shared almost untversally
among workers in Al: "Significant (all?) aspects of cognition and perception are best
understood/modeled as information processing activities on representations." The dominant tradition
within AI has been the symbolic paradigm'. On the other hand, modern connectionists (and the
earlier perceptron theorists) offer largely analog processes implemented by weights of connections in a
network. Stronger versions of the symbolic paradigm have been proposed by Newoll as the physical s
symbol system hypothesis (Newell, 1980) and elaborated by Pylyshyn(1984) in his thesis that com-
putation is not simply a metaphorical language to talk about cognition, but that cognition is
literally computation over symbol systems. It is important to emphasize that this thesis does not [
imply a belief in the practical sufficiency of current von Neuman computers for the task, or a
restriction to serial computation. Often disagreements with the symbolic paradigm turn out to be
arguments for paralell computers of some type rather than arguments against computations on dis-
crete symbolic representations.

The above description of intelligence as information processing does not, however, characterize the
class of intelligent processes well enough within the class of all information processing transfor- [
mations. Is there something that can be recognised as the essential nature of intelligence that can
be used to characterize all its manifestations: human, alpha-centaurian and artificial? It is possible
that intelligence is merely a somewhat random collection of information processing transformations I
acquired over eons of evolution, but in that case there can hardly be an interesting science of it. It
is also possible that there need not be anything that particularly restricts attempts to make intel-
ligent machines, i.e., while there may well be characterizations of human intellectual processes, they
need not be taken to apply to other forms of intelligence. While in some sense this seems right -- I
human intellectual 7rocesses do not bound the possibilities for intelligence -- nevertheless I believe
that there is an internal conceptual coherence to the class of information processing activities
characterizing intelligence. The oft-stated dichotomy between the simulation of human cognition
versus making machines smart is a temporarily useful distinction, but its implication that we are
talking about two very different phenomena is, I believe, incorrect. In any case, a task of Al as a
science is to explain human intelligence. The underlying unity that we are seeking can be further
characterized by asking, "What is it that unites Einstein, the man on the street in a western cul-
ture, and a tribesman in a primitive culture, as information processing agents?" 3

In this paper, my aim is to give a broad brush treatment of the attempts to understand the na-
ture of intelligence. By their very nature, such broad brush accounts tend to treat history a bit too
neatly. Another consequence of this is that an approach might be treated as belonging to a certain
class, while the authors of the approach in question might not share the implications of the clas-
sification. But a treatment in such broad terms is nevertheless necessary to make sense of a field
such as Al which is in some degree of conceptual c'onfusion about its foundations.

am nhappy with this term to .jescrile the ,nimitisa.It to computation over discrete symbolic system*. sinc0 I

think that all representations are symbolic. otherwise they wuidn't be representations. There is realy no satisfactory I
generally agreed brief term for this. FT,,Ior %nd Pylyshyn i88) Use the term "classical" models. Denuett ( 0861 ises
h.l t-ru,. -High Chiirch C-,m ,ptptatioualist,," 4utl - .. n. I will Aick with the teris - 1JsyiAholic paradigm." "Syut , li"

spproachea". and "sym lt ic crluptitationalism" t,, refer t . .. ,a)ta, tioa over discrete syiniol systems.
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My aim is not to give a quick tutorial on the history of Al, or even the various technical ideas in

Al. I am only concerned with what Al has had to say about the question, "What kind of infor-

mation processing is intelligence?" Also, this paper is really written for the A[ researcher who al-

ready knows the various theories. What I plan to do is offer a view of how the field really works

as a discipline, and how some disagreements can be understood only by tracing them to the root of

the problem: disagreements about the nature of the science.

2. Al Theories from the 40's to the 60's

2.1. Pre- and Quasi-Representational Theories

Let us now trace the various streams in Al that attempted to come to grips with the nature of

intelligence. The period under survey can be characterizedgas a transition from formalisms with an

essentially non-representational character through ideas which oscillated between brain-level vs

mind-level representations finally to a clear dominance of discrete symbolic representations within Al

and emphasis on higher cognitive phenomena.

The earliest of the modern attempts in this direction was the cybernetics stream, associated with

the work of Wiener (1048) who laid some of the foundations of modern feedback control2 . The

importance of cybernetics was that it suggested that teleology could be consistent ,.ith mechanism.

The hallmark of intelligence was said to be adaptation, and since cybernetics seemed to provide an

answer to how this adaptation could be accounted for with feedback of information, and also ac-

count for teleology (e.g., "The purpose of the governor is to keep the steam engine speed constant"),

it was a great source of early excitement for people attempting to model biological information

processing. However, Cybernetics never really became the language of Al, because it did not have

the richness of ontology to talk about cognition and perception: while it had the notion of infor-

mation processing in some sense, i.e., it had goals and mechanisms to achieve them, it lacked the

notion of computation, not to mention representations.

Modeling the brain as automata (in the sense of automata theory) was another attempt to provide

a mathematical foundation for intelligence. For example, the finite automata model of nervenets

that McCulloch and Pitts (1943) proposed was among the first concrete postulations about the brain

as a computational mechanism. Automata models were computational, i.e., they had states and

state transition functions, and the general theory dealt with what kinds of automata can do what

kinds of things. While this was a source of great excitement -- one should try to imagine being

present at the time when the computer, information theory and the automata theories were all being

born at about the same time, and the sense of exhilaration that must have resulted from the

thought that a formal language in which to talk about minds and brains was within reach! -- in

retrospect, automata theory didn't have enough of the right kind of primitive objects for talking

about the phenomena of cognition and perception. What Al needed was not theories about com-

putation but theories which were descriptions of particular computations, i.e., really programs that

embody theories of cognition. Naturally enough, automata theory evolved into the formal foun-

dation for some aspects of computer science, but its role in Al per se tapered off.

Another strain, which was much more explicit in its commitment to seeking intelligence by

12 yh rnetirs as a movement had hroader Cn,erns than tie issites surrounding feedhack -. ,ntrol. V& .%pplied by

Wiener a., iaw lentanling -,,ntrol and it U allint ili Ian uiznnal8 %ad linachies. [ainorin ation nul, at rhlit ,rte..s an. I

itnaral li't to i ttntnlntat;m were kll v[.trt .. f tle yt r tw taljijeni -)f hrj ni nK ertain hiologic ml phranoniel a liuler file
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modeling its seat, the brain, looked at neurons and neural networks as the units of information I
processing out of which thought and intelligence can be explained and produced. Neural net
simulation and the work on Perceptrons (Rosenblatt, 1962) are two major examples of this class of
work. Its lineage can be traced to Hebb's work (Hebb, 1949) on cell assemblies which had a strong 3
effect on psychological theorizing. Hebb proposed a dynamic model of how neural structures could
sustain thought, how simple learning mechanisms at the neural level could be the agents of higher
level learning at the level of thought. In retrospect, there were really two rather distinct kinds of I
aims that this line of work pursued. In one, an attempt was made to account for the information
processing of neurons and collections of th-ern. To the extent that it is generally granted that neural
structures form the implementation medium of human intelligence and thought. this .eems like an
eminently important line of investigation. In fact, over the years, concrete identifications have been g
made of particular functions computed by particular neural structures in the brain, and these data
may eventually form the empirical basis of any theory of how brains and minds can be bridged
analytically.

In the other line of work in neural models - prefiguring the claims of latter day connectionism
-- the attempt is to explain intelligence directly in terms of neural computations. Since in AI ex- I
planation of intelligence takes the form of constructing artifacts which are intelligent, this is a tall

order -- the burden of producing programs which simulate neural-like mechanisms on one hand,
and at the same time do what intelligent agents do: solve problems, perceive, explain the world.
speak in a natural language, etc. is a heavy one. There is a problem with the level of description I
here -- the terms of neural computation seem far removed from the complex content of thought
-- and bridging it without hypothesizing levels of abstraction between neuronal information
processing and highly symbolic forms of thought is difficult. In other words, even if it is true that
the brain is made up completely of neural structures of certain types whose behavior is fully under-
stood, and if one is given a bucketful of such neural strcutures one would still be not very close to
constructing a natural language understanding program without theories of knowledge and syntax
and semantics. The general temptation in this area has been to sidestep the difficulties by assuming
that appropriate learning mechanisms at the neural level can result in sufficiently complex high level
intelligence, much as it presumably occurred in evolution, so that the designer of the artifact need I
not have theories of cognition or perception at levels higher than the neural level. But the dif-
ficulty of getting the necessary learning to take place in less than evolutionary time has generally
resulted in the neural network level not being a serious contender for Al theory making and system 3
construction until a new generation of connectionist models began to admit representations of high
level abstractions directly. Because it raises not only the level of abstraction issues but also issues
about the nature of representations, I propose to discuss connectionism separately (Section 3).

A large body of work, mainly statistical in character, developed under the rubric of pattern recog-
nition (see a text such as (Duda, 1973)). It identified the problem of recognition with classification
and developed a number of statistical algorithms for classification. While it had a number of 3
representational elements (the object in question was represented as a vector in a multidimentional
space) and shared some of the concerns with the perceptron work (linear or nonlinear separability of
patterns in N-dimensional. spaces), it developed into a mathematical discipline of its own without $
making a significant impact on the overall concerns of Al. In (Chandrasekaran, 1986a), I discuss
how more flexible representations are increasingly needed for even the classification problem as the
complexity of the problem increases. 3

A number of reasons can be cited for the failure of all this class of work, viz., perceptrons, neural
nets, and statistical classification to hold center stage in Al. The loss of interest in perceptrons is
often attributed to the demonstration by Minsky and Papert (1969) of their inadequacies. I believe, 1
however, that their demonstration was in fact limited to single layer perceptrons, and was not the
real reason for their disappearance from the scene. The real reason, I believe, is that powerful

I



representational and representation manipulation tools were missing. The alternative of discrete
symbolic representations quickly filled this need, and provided an experimental medium of great
flexibililty.

2.2. Early Al Work Based on Symbolic Representations

The final transition to discrete symbolic representations was rather quick. The mathematics of
computabilty also made some investigations along this line attractive and productive. The end of
the period saw not only a decisive shift towards representational approaches, but the particular kind
of representationalism that became the common currency was the symbolic paradigm.

Early work in this computationalist spirit took on two major forms:

1. Show mathematically that certain functions thought to be characteristic of intelligence
were computable, (e.g., induction machines of Solomonoff (1957), Gold's work on learning
of grammars (Gold, 1967)). From the viewpoint of constructzng artifacts that would
perform these functions these results would in fact have been depressing if notions of
complexity of co rputation, which were later to be developed in computer science with

great elegance and precision, had been available at that time. The algorithms proposed
were typically computationally intractable. However, in reality, this family of results was
important to Al in making the idea of machine intelligence theoretically more plausible
by showing that the mental functions as defined by reasonable appeal to intuition were in
fact computable -- a certain amount mysticism that would otherwise surround terms5such as "induction" and "learning" was thus eliminated 3 .

2. Demonstrate the possibility.of Al by building computer programs that solve problems re-
quiring intelligence. Game playing programs, the Analogy program of Evans, the scene
analysis program of Guzman and the Logic Theorist and the heuristic compiler of Newell
and Simon, etc., etc., showed that the underlying features of intelligence of which they
were meant to be demonstrations were in fact capable of artifactual embodiment. Of
course the intent of these programs was not merely that -- each of which was also an
exploration of a general theory of some sort, problem solving, scene analysis, analogical
reasoning, etc.-- but not all of them led to more general theories about fundamental
issues in Al. But, whatever their original intent, all these early programs ended up
playing the roles of "realities in the field" to counteract the intellectual milieu of that
time which resisted the no' ion of intelligence as mechanical.

In general, the net result of most (not all) of this work was socio-psychological: it made the idea of
Al plausible, and blunted the first round objections, such as , "Ah, but machines cannot learn," and
"Ah, but machines cannot create." These early programs were also the means by which
psychologists and philosophers became aware of the new kid on their block. The attention that A[

gained at that time ha continued to this day.

3 3. On the Nature of Representations: Connectionism vs The Symbolic
Paradigm

3 Let me restate some of the terminology here. I have called the hypothesis that intelligence can be

3it is ta ,r,'up iestiou witether , sr awl ier3 taidifag 4 ii., lu-tim.. -.. wts ill fact tellineiy adva ce.i fr'-la tie view-
Sp.,~iut ,*~ I hmldiag machwu s ,,, perf',r lu...
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accounted for by algorithmic processes which interpret discrete symbol systems the symbohc parcdigm
or symbolic approaches. Let us call the alternative to this the non.symbohc paradigm or approaches.
for lack of a better word. Connectionism is an example of this alternative, though not the only

one.

A source of confusion is that connectionist theorists often use algorithmic language for describing
parts of their systems' behavior. It is my belief (see Section 3.3) that such an algorithmic
specification is quite irelevant, and does not involve basic representational commitments. I want to

reserve the term "symbolic" approaches to those theories which make representational commitments

at the theoretical level fcr discrete symbol systems.

Since connectionism challenges some of the basic assumptions under which much A[ work has gone
on for the past several decades, it is important to spend some time examining the nature of
representations, and the differences between the symbolic paradigm and connectionism in this regard.
This section will be in the form of a detour, since the major part of this paper (from Sections 4
onward) will be on the theories of the past two decades in the symbolic paradigm.

3.1. The Roots of the Debate

The connectionism- symbolic computationalism debate in Al today is but the latest version of a
fairly classic contention between two sets of intuitions each leading to a weltanschauung about how
to study the phenomena of current interest. The debate can be traced at least as far back as Des-

cartes in modern times (and to Plato if one wants to go further back) and the mind-brain dualism
that goes by the name of Cartesianism. In the Cartesian worldview, the phenomena of mind are

exemplified by language and thought. These phenomena may be implemented by the brain, but are
seen to have a constituent structure in their own terms and can be studied abstractly. Logic and

symbolic representations have often been advanced as the appropriate tools for studying these

phenomena.

Functionalism in philosophy, information processing theories in psychology, and the symbolic

paradigm in Al all share these assumptions. While most of the intuitions that drive this point of I
view arise from a study of cognitive phenomena, the thesis is often extended to include perception,

as e.g. in Bruner's thesis (Bruner, 1957) that perception is inference. In its modern versions this
viewpoint appeals to Turing's Hypothesis as providing a justification for limiting attention to sym-
bolic computational models. These models ought to suifice, the argument goes, since even con-

tinuous functions can be computed to arbitrary precision by a Turing machine.

The opposition to this view springs from anti-Cartesian intuitions. My reading of the

philosophical impulse behind anti-Cartesianism is that it is a reluctance to assign any kind of on-
tological independence to mind, a reluctance arising from the feeling that mind-talk is but an in-

vitation to all kinds of further mysticisms, such as soul-talk. Thus anti-Cartesians tend to be
materialists with a vengeance, and are skeptical of the separation of the mental from the brain-level
phenomena. Additionally, the brain is seen to be nothing like the symbolic processor needed to
support the symbolic paradigm. Instead of what is seen as the sequential and combinational a
perspective of the symbolic paradigm, some of the theories in this school embrace parallel, "holistic",

non-symbol-processing alternatives, while others do not even subscribe to any kind of information

processing or representational language in talking about mental phenomena. Those who think infor-
mation processing of some type is still needed nevertheless reject processing of labeled symbols, and

look to analog or continuous processes as the natural medium for modeling the relevant phenomena.
In contrast to Cartesian theories, most of the concrete work in these schools deals with perceptual

(or even motor) phenomena, but the framework is meant to cover complex cognitive phenomena as

well. Eliminative materialism in philosophy, Gibsonian theories in psychology, connectionism in



3 psychology and Al, all these can be grouped as more or less sharing this perspective, even though
they differ among each other in a number of issues. For example, the Gibsonian direct perception

theory is anti-representational. Perception, in this view, is not inference nor a product of any kind
of information processing, but is a one-step mapping from stimuli to categories of perception, made
possible by the inherent properties of the perceptual architecture. All the needed distinctions are
already there directly in the architecture, and no processing over representations is needed. To put

it simply, the brain is all there is and it isn't a computer either.

Note that the proponents of the symbolic paradigm can be happy with the proposition that mental

phenomena are implemented by the brain, which may or may not itself have a compitationalist ac-

count. However, the anti-Cartesian cannot accept this duality. He is out to show the mind as
epiphenomenal.

3 I need to caution the reader that each of these positions that I have described above is really a

composite. Few people in either camp subscribe to all the features in my description of them. Most
of them may not even be aware of themselves as participating in such a classic debate. In par-
ticular, many connectionists may bristle at my inclusion of them on the side of the debate that I

did, since their accounts are laced with talk of "connectionist inference" and algorithms for the

units. The algorithmic accounts in my view are incidental. (I discuss this further in Section 3. 3.)

But my account, painted with a broad brush as it is, is helpful to understand the rather diverse

collection of bedfellows that connectionism has attracted.

Connectionism is a recent and less radical member of this camp. Many connectionists do not have
commitment to brain-level theory making. It is also explicitly representational, its only argument

being about the medium of representation.

I believe that there is in fact a great deal of unanalyzed assumptional baggage in each of these

classes of theories. I will try to show that connectionism is a corrective to some of the basic as-
sumptions in the symbolic paradigm, but for most of the central issues of intelligence, connectionism3 is only marginally relevant.

As a preliminary to the discussion, I want to try to pin down, in the next subsection, some es-
sential distinctions Leetween the symbolic and nonsymbolic approaches to information processing.

9.2. Symbolic and Non-Symbolic Representations

Consider the problem of multiplying two integers. We are all familiar with algorithms to perform

this task. We also know how the traditional slide rule can be used to do this multiplication. The
multiplicands are represented by their logarithms on a linear scale, which are then "added" by being

set next to each other, and the result is obtained by reading off the sum's anti-logarithm. While

both the algorithmic and slide rule solutions are representational, in no sense can either of them be
thought of as an "implementation" of the other. They make very different commitments about
what is represented. There are also striking differences between them in practical terms. As the

size of the multiplicands increases, the algorithmic solution suffers in the amount of time it takes to
complete the solution, while the slide-rule solution suffers in the amount of precision it can deliver.

Let us call the algorithmic and slide-rule solutions Cl and C2. There is yet another solution C3,
which is the simulation of C2 by an algorithm. C3 can simulate C2 to any desired accuracy. But

C3 has radically different properties from C1 in terms of the information that it represents. C3 is
closer to C2 representationally. Its symbol manipulation character is at a lower level of abstraction

altogether. Given a blackbox multiplier, ascription of Cl or C2 (among others) as what is really

going on makes for different theories about the process. Each theory makes different ontological3 commitments. Further, while C2 is "analog" or continuous, the existence of C3 implies that the

I



essential characteristic of C2 is not continuity per se, but a radically different sense of representation
and processing than C1.

An adequate discussion of what makes a symbol in the sense used in computation over symbol
systems requires a much larger space and time than I have at present (see (Pylyshyn, 1984) for a
thorough and illuminating discussion of this topic), but the following points seem useful. There is a
type-token distinction that seems relevant: symbols are types about which abstract rules of behavior
are known and can be brought into play. This leads to symbols being labels which are
"interpreted" during the process, while there are no such interpretations in the process of slide rule
multiplication (except for input and output). The symbol system can thus represent abstract forns,
while C2 above performs its addition or multiplication not by instantiating an abstract form, but by
having, in some sense, all the additions and multiplications directly in its architecture.

While I keep using the word "process" to describe both CI and C2, strictly speaking there is no
process in the sense of a temporally evolving behavior in C2. The architecture directly produces the
solution. This is the intuition behind the Gibsonian direct perception in contrast to the Bruner al-
ternative of perception as inference4 : the process of inference implies a temporal sequentiality. Con-
nectionist theories have a temporal evolution, but at each cycle, the information process does not
have a step-by-step character like algorithms do. Thus the alternatives in the non-symbolic
paradigm are generally presented as "holistic."

The main point of this section is that there exists functions for which symbol and non-symbol
system accounts differ fundamentally in terms of representational commitments.

3.3. Connectionism and Its Main Features

While connectionism as an Al theory comes in many different forms, they all seem share to the
idea that the representation of information is in the form of weights of connections between process-
ing units in a network, and information processing consists of (i) the units transforming their input
into some output, which is then (ii) modulated by the weights of connections as inputs .to other
units. Connectionist theories especially emphasize a form of learning which is largely in the form of
continuous functions adjusting the weights in the network. In some connectionist theories the above
"pure" form is mixed with symbol manipulation processes. My description is based on the abstrac-
tion of connectionist architectures as described by Smolensky (1988). Smolensky's description cap-
tures the essential aspects of the connectionist architecture.

A few additional comments on what constitutes the essential aspects of connectionism may be
useful, especially since connectionist theories come in so many forms. My description above is
couched in non-algorithmic terms. In fact many connectionist theorists describe the units in their
systems in terms of algorithms which map their inputs into discrete states. My view is that the
discrete state description of the units' output as well as the algorithmic specification of the units'
behavior is not substantially relevant. Smolensky's statement that differential equations are the ap-
propriate language to use to describe the behavior of connectionist systems lends credence to my
summary of connectionist systems.

While my description is couched in the form of continuous functions, the arguments in the Section

4 Whether perception. if it is an inferential process. necessarily has to be continuous with cognitive processes. i.e..
they all have access to one knowledge base of an agent is a completely different issue (Fodor. 1093). 1 am mention.
Wue it here because the perception as inference thesis does not necessarily mean one monolithic process for all the
pheueuna of inttlligence.



3.2 indicate that it is not in the property of continuity per se that the essential aspect of the ar-
chitecture lies, but in the fact that the connectionist medium has no internal labels which are inter-
preted and no abstract forms which are instantiated during processing. Thus connectionist models
stand in the same relationship to the symbolic models that C2 does to Cl in my discussion in Sec-
tion 3.2.

There are a number of properties of such connectionist networks that are worthy of note and that
explain why connectionism is viewed as an alternative paradigm to the symbolic theories.

" Parallelism: While theories in the symbolic paradigm are not restricted to serial al-
gorithms, connectionist models are intrinsically parallel, in most implementations massively
parallel.

" Distributedness: Representation of information is distributed over the network in a very
specialized sense. i.e.. the state vector of the weights in the network is the representation.
The two properties of parallelism and distribution have attracted adherents who feel that
human memory has a "holistic" character -- much like a hologram -- and con-
sequently have reacted negatively to discrete symbol processing theories, since these com-
pute the needed information from parts and their relations. Dreyfus (1979), e.g., has
argued that human recognition does not proceed by combining evidence about constituent
features of the pattern, but rather uses a holistic process. Thus Dreyfus looks to con-
nectionism as vindication of his long-standing criticism of Al. Connectionism is said to
perform "direct" recognition, while symbolic Al performs recognition by sequentially
computing intermediate representations.

" Softness of constraints (Smolensky, 1988): Because of the continuous space over which the
weights take values, the behavior of the network, while not necessarily unimodal, tends to
be more or less smooth over the input space.

The above characteristics are especially attractive to those who believe that Al must be based more
on brain-like architectures, even though within the connectionist camp there is a wide divergence
about the degree to which directly modeling the brain is considered appropriate. While some of the
theories explicitly attempt to produce neural-level computational structures, some others (see e.g,
(Smolensky, 1988)) propose a "subsymbolic level" intermediate between symbolic and neural level
theories, and yet others offer connectionism as a computational method that operates in the symbolic
level representation itself. The essential idea uniting them all is that the totality of connections
defines the information content, rather than representing information as a symbol structure.

3.4. Is Connectionism Merely An Implementation Theory?

Two kinds of arguments have been made that connectionism can at best provide possible im-
plementations for algorithmic Al theories. The traditional one, viz., that symbolic computationalism
is adequate, takes a couple of forms. In one, continuous functions are thought to be the alternative,
and the fact that they can be approximated to an arbitrary degree of approximation is used to ar-
gue that one need only consider algorithmic solutions. In the other, connectionist architectures are
thought to be the implementation medium for symbolic theories, much as the computer hardware is
the implementation medium for software. In an Section 3.2, I have considered and rejected these
arguments. I showed that in principle the symbolic and non-symbolic solutions may be alternative
theories in the sense that they may make different representational commitments.

The other argument is based on a consideration of the properties of high level thought, in par-
ticular language and problem solving behavior. Connectionism by itself does not have the con-
structs, the argument runs, for capturing these properties, so at best it can only be a way to im-
plement the higher level functions. I will discuss this and related points in Section 3.8.
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Having granted that connectionism (actually, non-symbolic theories in general) can make a

theoretical difference, I now want to argue that the difference connectionism makes is relatively small

to the practice of most of Al. This is the task of the rest of Section 3.

3.5. Need for Compositionality

Proponents of connectionism sometimes claim that solutions in the symbolic paradigm are com-

posed from constituents, while connectionist solutions are holistic, i.e., they cannot be explained as

compositions of parts. Composition, in this argument, is taken to be intrinsically an algorithmic

process.

Certainly, for some simple problems there exist connectionist solutions with this holistic character.

For example, there are connectionist solutions to character recognition which directly map from

pixels to characters and which cannot be explained as composing evidence about the features such as

closed curves, lines and their relations. Character recognition by template matching, though not a

connectionist solution, is another example whose information processing cannot be explained as fea-

ture composition. But as problems get more complex, the advantages of modularization and com-

position are as important for connectionist approaches as they are for house-building or algorithmic

Al. A key point is that composition may be done connectionistically, i.e., it does not always re-

quire algorithmic methods.

To see this, let us consider word recognition, a problem area which has attracted significant con-

nectionist attention (McClelland, Rumelhart, and Hinton, 1986). Let us take the word "QUEEN"'

A "featureless" connectionist solution similar to the one for individual characters can be imagined,

but a more natural one would be one which in some sense composes the evidence about individual

characters into a recognition of the word. In fact, the connectionist solution in (McClelland, et al,

1986) has a natural interpretation in these terms. The fact that the word recognition is done by

composition does not mean either that each of the characters is explicitly recognized as part of the

procedure, or that the evidence is added together in a step by step, temporal sequence.

Why is such a compositional solution more natural? Reusability of parts, reduction in learning

complexity as well as greater robustness due to intermediate evidence are the major computational

advantages of rr 'dularization. If the reader doesn't see the power of modularization for word

recognition, he can consider sentence recognition and see that if one were to go directly from pixels

to sentences without in some sense going through words the number of recognizers and their com-

plexity would have to be very large even for sentences of bounded length.

To use another example, if one has a system that already recognizes "Monkey," "banana," and

"Eat(a, b)", then recognizing "Monkey eats banana," without composing the constituent recognizing

capabilities above would be very wasteful of resources and would require excessive learning times as

well. Composition is a powerful aid against complexity whether the underlying system is connec-

tionist or algorithmic. Of course, connectionism provides one style for composition and algorithmic

methods another, each with its own "signature" in terms of the details of performance.

These examples also raise questions about the claims of distributedness of connectionist represen-

tations. For complex tasks, information is in fact localized into portions of the network. Again, in

McClelland, et al's network for word recognition physically local subnets can be identified, each cor-

responding to one of the characters. Thus the the hopes of some proponents for almost holographic

distributedness of representation are bound to be unrealistic.
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3.6. Information Processing Level Abstractions

Marr (1982) originated the method of information processing analysis as a way of separating the
essential elements of a theory from implementation level commitments. He proposed that the fol-
lowing methodology be adopted for this purpose. First, identify an information processing function
with a clear specification about what kind of information is available for the function as input and
what kind of information needs to be made available as output by the function. Then specify a
particular information processing (IP) theory for achieving this function by stating what kinds of
information the theory proposes need to be represented at various stages- in the processing. Actual
algorithms can then be proposed to carry out the IP theory. These algorithms will make additional
representational commitments. For example, he specified that one of the functions of vision is to
take as input image intensities in a retinal image, and produce as output a 3-dimensional shape
description of the objects in the scene. His theory of how this function is achieved in the visual
system is that three distinct kinds of information need to be generated: from the image intensities, a
primal sketch of significant intensity changes -- a kind of edge description of the scene -- iS
generated, then a description of surfaces of the objects and their orientation, what he called a 2 1 2
-dimensional sketch is produced from the primal sketch, and finally a 3-d shape description is
generated.

Even though Marr talked the language of algorithms as the way to realize the [P theory, there is
in principle no reason why portions of the implementation cannot be done connectionistically.

Thus IP level abstractions constitute the top level content of much Al theory making. In the ex-
ample about recognition of the word "QUEEN" in Section 3.5, the [P level abstractions in terms of
which the theory of word recognition was couched were the evidences about the presence of in-
dividual characters. The difference between schemes in the symbolic and connectionist paradigms is
that these evidences are labeled symbols in the former, which permit abstract rules of compositions
to be invoked and instantiated, while in the latter they are represented more directly and affect the
processing without undergoing any interpretive process. Interpretation of a piece -of a network as
evidence about a character is a design and explanatory stance, and is not part of the actual infor-
mation processing.

As connectionist structures evolve (or are built) to handle increasingly complex phenomena, they
will end up having to incorporate their own versions of modularity and composition. Already we
saw this in the only moderately complex word recognition example. When and if we finally have
connectionist implementations solving a variety of high level cognitive problems (say natural lan-
guage understanding or planning or diagnosis), the design of such systems will have an enormous
amount in common with the corresponding symbolic theories. This commonness will be at the level
of information processing abstractions that both classes of theories would need to embody. In fact,
the content contributions of many of the nominally symbolic theories in AI are really at the level of
the IP abstractions to which they make a commitment, and not to the fact that they were imple-
mented in a symbolic structure. Symbols have often merely stood in for abstractions that need to
be captured one way or another, and have often been used as such. The hard work of theory
making in Al will always remain at the level of proposing the right IP level of abstractions, since
they provide the content of the representations. The decisions about which of the transformations
are best done by means of connectionist networks, and which using symbolic algorithms, can
properly follow once the [P level specification of the theory has been given.

Thus, connectionist (and symbolic) approaches are both realizations of a more abstract level of

I
I
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description, viz., the information processing (IP) level.'

Rumelhart and McClelland (1986) comment that symbolic theories that are common in Al are
really explanatory approximations of a theory which is connectionist at a deeper level. To take the
"QUEEN" example again, saying that the word is recognized by combining evidences about in-
dividual characters in a certain way may appear to be giving an algorithmic account, but this
description is really neutral regarding whether the combination is to be done connectionistically or
algorithmically. It Ls not that connectionist structures are the reality and symbolic accounts provide
an explanation, it is that it is the IP abstractions contained in A[ theories that contain a large
portion of the explanatory power.

I argued, in Section 3.2. that given a function, the approaches in the symbolic and non-ymbolic
paradigms may make rather different representational commitments; in compositional terms, they
may be composing rather different subfunctions. In this section I am arguing, seemingly paradoxi-
cally, that for complex functions the two theories converge in their representational commitments. A
way to clarify this is to think of two stages in the decomposition: an architecture-independent and
an architecture-dependent one. The former is an IP theory that will be realized by particular ar-
chitectures for which additional decompositions will need to be made. Simple functions such as
multiplication are so close to the architecture level that we only saw the differences between the
representational commitments of the algorithmic and slide rule solutions. The word recognition
problem is sufficiently removed from the architectural level that we saw macrosimilarities between
computationalist and connectionist solutions. The final performance will of course have micro-
features that are characteristic of the architecture (such as the "softness of constraints" for connec-
tionist architectures).

Where the architecture-independent theory stops and the architecture-dependent starts does not
have a clear line of demarcation. It is an empirical issue, partly related to the primitive functions
that can be computed in a particular architecture. The farther away a problem is from the
architectures' primitive functions, the more architecture-independent decomposition needs to be done
at design time. I believe that certain kinds of retrieval and matching operations, and parameter
learning by searching in local regions of space are especially appropriate primitive operations for
connectionist architEct ures.

3.7. Learning to the Rescue?

What if connectionism can provide learning mechanisms such that one starts without any such
abstractions represented, and the system learns to perform the task in a reasonable amount of time?
In that case, connectionism can sidestep pretty much all the representational problems and dismiss
them as the bane of the symbolic paradigm. The fundamental problem of complex learning is the
credit asuignment problem, i.e, the problem of deciding what part of the system is responsible for
either the correct or the incorrect performance in a case, so that the learner knows how to change
the structure of the system. Abstractly, the range of variation of the structure of a system can be
represented as a multi-dimensional space of parameters, and the process of learning as a search
process in that space for a region that corresponds to the right structure of the systems. The more
complex the system, the vaster the space in which to do the search. Thus learning the correct set
of parameters by search methods which do not have a powerful notion of credit assignment would
work in small search spaces, but would be computationaly prohibitive for realistic problems. Does
connectionism have a solution to this problem?
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If one looks at particular connectionist schemes that have been proposed for some tasks such as
learning tense endings (Rumeihart and McClelland, 1986b), a significant part of the abstractions
needed are built into the architecture in the choice of inputs, feedback directions, allocation of sub-

networks, and the semantics that underlie the choice of layers for the connectionist schemes. That
is, the inputs and the initial configuration incorporate a sufficiently large part of the abstractions
needed that what is left to be discovered by the learning algorithms, while nontrivial, is propor-
tionately small. The initial configuration decomposes the search space for learning in such a way
that the search problem is much smaller in size. In fact the space is sufficiently small that statis-
tical associations can do the trick.

The recognition scheme for "QUEEN' again provides a good example for illustrating this point.
In the McClelland, et al, scheme that I cited earlier essentially the decisions about which subnet is
going to be largely responsible for "Q", which for "U," etc, as well as how the feedback is going to
be directed are all made by the experimenter before learning starts. The underlying IP theory is
that evidence about individual characters is going to be formed directly from the pixel level, but
recognition of "QU" will be done by combining information about the presence of "Q" and "U". as
well as their joint likelihood. The degree to which the evidence about them will be combined is
determined by the learning algorithm and the examples. In setting up the initial configuration, the
designer is actually programming the architecture to reflect the above [P theory of recognizing the
word. An alternate theory for word recognition, say one that is more holistic than the above theory

(i.e., one that learns the entire word directly from the pixels) will have a different initial configura-
tion. (Of course, because of lack of guidance from the architecture about localizing search during
learning, such a network will take a much longer time to learn the word. But that is the point:
the designer recognized this and set up the configuration so that learning can occur in a reasonable
time.) Thus while the connectionist scheme for word recognition still makes the useful performance
point about connectionist architectures for problems that have been assumed to require a symbolic
implementation, a significant part of the leverage still comes from the IP abstractions that the
designer started out with, or have been made possible by an earlier learning phase working with
highly structured configurations.

Additionally, the system that results after learning has a natural interpretation in terms of the
abstractions that are needed to solve the problem; the learning process can be interpreted as having
successfully searched the space for those additional abstractions that are needed to solve the
problem. Thus, connectionism is one way to map from one set of abstractions to a more structured
set of abstractions. Most of the representational issues remain, whether or not one adopts connec-
tionism for such mappings.

Of course in human learning, while some of the abstractions needed are "programmed" in at
various times through explicit instruction, a large amount of learning takes place without any
"designer" intervention in setting up the learning structure as I described in the "QUEEN" example.
But there is no reason to believe that humans start with a structure- and abstraction-free initial
configuration. In fact, in order to account for the power of human learning, the initial configura-
tions that a child starts out-with will need to contain complex and intricate representations suf-
ficient to support the learning process in a computationally efficient way.

3.8. The Domains for Connectionism and Symbolic Computations

For this discussion, a distinction between "micro" and "macro" phenomena of intelligence is use-
ful. Rumelhart, McCleland, et al (1986) use the former term in the subtitle of their book to in-
dicate that the connectionist theories that they are concerned with deal with the fine details of
processes. A duration of 50-100 milliseconds has often been suggested as the size of the temporal
"grain" for processes at the micro level. Macro phenomena take place over seconds if not minutes
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in the case of a human. These evolve over time in such a way that there is a clear temporal or-
dering of some of its major behavioral states. For example, take the problem solving behavior
represented by the GPS problem solver. The agent is seen to have a goal at a certain instant, to 3
set up a subgoal at another instant, and so on. Within this problem solving behavior, the selection
of an appropriate operator, which is typically modeled in GPS implementations as a retrieval algo-
rithm from a Table of Connection, could be a "micro" behavior. Many of the phenomena of lan-
guage and reasoning have a large macro component. Thus this domain includes. out is not
restricted to, phenomena whose markings are left in consciousness as a temporal evolution of beliefs.
hypotheses, goals, subgoals, etc. 3

Neither traditional symbolic computationalism nor radical connectionism has much use for this
distinction since all the phenomena of intelligence, micro and macro, are meant to come under their
particular purview. I would !ike to present the case for a division of responsibility between connec- 5
tionism and symbolic computationalis m in accounting for the phenomena of interest. Simply put.
the architectures in the connectionist mold offer some elementary functions which are rather different
from those assumed in the traditional symbolic paradigm. By the same token, the body of macro
phenomena seems to me to have a large symbolic and algorithmic content. A proper integration of
these two modes of information processing can be a source of powerful' explanations of the total
range of the phenomena of intelligence. 3

I am assuming it as a given that much of high level thought has a symbolic content to it (see
(Pylyshyn, 1984) for arguments that make this conclusion inescapable). How much of language and
other aspects of thought require this can be matter of debate, but certainly logical reasoning should
provide at least one example of such behavior. I am aware that a number of philosophical hurdles
stand in the way of asserting the symbolic content of conscious thought. If one is a radical be-
haviorist or a non-representationalist, I can see that no advantage accrues from granting that the 3
corpus of thought. including language and reasoning, has a symbolic structure. Saying that all that
passes between people when they converse is airpressure exchanges on the eardrum has its charms.
but I will forego them in this discussion. I

Asserting the symbolic content of macro phenomena is not the same as asserting that the internal
language and representation of the processor that generates them has to be in the same formal sys-
tem as that of its external behavior. The traditional symbolic paradigm has made this assumption U
as a working hypothesis, which connectionism challenges. Even if this challenge is granted there is
still the problem of figuring out how to get the macro behavior out of the connectionist structure.

Fodor and Pylyshyn (1987) have argued that much of thought has the properties of productnity I
and systematicty. Productivity refers to a potentially unbounded recursive combination of thought
that is possible in human intelligence. Systematicity refers to the capability of combining thoughts
in ways that require abstract representation of underlying forms. Connectionism, according to Fodor I
and Pylyshyn, may provide some of the architectural primitives for performing parts of what is

needed to achieve these characteristics, but cannot be an adequate account in its own terms. We
need computations over symbol systems, their capacity for abstract forms and algorithms, to realize I
these properties.

In order to account for the highly symbolic content of conscious thought and to place connec-
tionism in a proper relation to it, Smolensky (1988) proposes that connectionism operates a lower
level than the symbolic, a level he calls subsymbolic. He also posits the existence of a conscious
processor and an intuitive processor. The connectionist proposals are meant to apply directly to the
latter. The conscious processor may have algorithmic properties, according to Smolensky, but still a I
very large part of the information processing activities that have been traditionally attributed to al-
gorithmic architectures really belong in the intuitive processor.

I
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3A complete connectionist account in my view needs to account for how a sub- or nonsymbolic
structure integrates smoothly with a higher level process that is heavily symbolic. There is the ad-
ditional problem that an integrated theory has to face. Thought could be epiphenomenal. However.
we know that the phenomena of consciousness have a causal interaction with the behavior of the
intuitive processor. What we consciously learn and discuss and think affects our unconscious be-
havior slowly but surely, and vice versa. What is conscious and willful today becomes unconscious
tomorrow. All this raises a more complex constraint for connectionism: it now needs to provide
some sort of continuity of representation and process so that this interaction can take place
smoothly.

3Connectionist and symbolic computationalist phenomena, in my view, have different but overlap-
ping domains. The basic functions that the connectionist architecture delivers are of a very different
kind than have been assumed so far in Al, and thus computationalist theories need to take this .nto
account in their formulations. A number of investigators in Al who do theories at this higher level
correctly feel the attraction of connectionist style theories for some parts of their theory making. I
have acknowledged 'he power of the connectionist claims that for some information processing
phenomena, there exist nonalgorithmic schemes which make fewer (and different) commitments in
terms of representational content. Where the impact of connectionism is being felt is in identifying
some of the component processes of overall algorithmic theories as places where a connectionist ac-
count seems to accord better with intuitions. As I said earlier, retrieval and matching operations
and low level parameter learning are places where I would think the higher level theories may
choose connectionist alternatives if the fine points of performance are of theoretical importance. But,
even here one should be careful about putting too much faith in connectionist mechanisms per se.
As I have said several times in this section, the power for even these operations is going to come
from appropriate encodings that get represented .connectionistically. Thus, while memory retrieval
may have interesting connectionist components to it, the basic problem will still remain the prin-
ciples by which episodes are indexed and stored, except that now one might be open to these en-
codings being represented connectionistically. For example, I am in complete sympathy with the
suggestion by Rumelhart, Smolensky, McClelland and Hinton (1986) that a schema or a frame is
not explicitly represented as such, but is constructed as needed from more general connectionist
representations. This does not mean to me that schema theory is only a macro approximation.
Schema, in the sense of being IP abstractions needed for certain macro phenomena, is a legitimate
conceptual construct, for encoding which connectionist architectures offer a particularly interesting
way.

With regard to general Al and connectionism's impact on it, I would like to say, as
H. L. Mencken is alleged to have said in a different context, "There is something to what you say,
but not much." Much of Al (except where microphenomena dominate and computationalist Al is

simply too hard edged in its performance) will and should remain largely unaffected by connec-
tionism. I have given two reasons for this. One is that most of the work is in coming up with

the information processing theory of a phenomenon in the first place. The more complex the task is
the more common are the representational issues between connectionism and the symbolic paradigm.
The second reason is that none of the connectionist arguments or empirical results show that the
symbolic, algorithmic character of thought is either a mistaken hypothesis, purely epiphenomenal or
simply irrelevant.

3 My arguments for and against connectionist notions in this section are not really specific to con-
nectionist architectures that have been proposed. The arguments apply to alternatives in the non-
symbolic paradigm. e.g., all sorts of analog computers. Connectionist style architectures, especially
those that deny modeling the brain level, often seem to have an air of arbitrariness about them.
since it is then not clear what the constraints are: why that rather than something else? But, in
fairness, these architectures ought to be viewed as exploratory, and in that sense they are contribut-3ing to our understanding of the capabilities and limitations of alternatives to the symbolic paradigm.

I
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It seems to me that we need to find a modus vtvend% between three significant insights about
mental architectures:

" (i) A large part of the relevant content theory in Al has to do with the what of mental
representations. I have called them IP abstractions.

" (ii) Whatever one's position on the nature of representations below conscious processes. it
is clear that processes at or close to that level are intimately connected to language and
knowledge, and thus have a large discrete symbolic content.

" (iii) The connectionist ideas on representation suggest how nonsymbolic representations
and processes may provide the medium in which thought resides.

3.9. Transition to the Rest of the Paper

Connectionism has been important to my discussion not because its technical accomplishments have
thrown down a challenge to symbolic approaches to Al, but because it replays one side of a long-
running debate about the nature of the relationship between mind and brain. In spite the hopes of
some of its supporters in philosophy, connectionism will not banish mind-talk, which is essentially
representational and symbolic.

I now want to pick up the main thread of this paper. I want to review Al theories of the last
two decades and see if a view of what makes intelligence a coherent computational phenomenon can
be constructed. In view of the arguments in this section, my discussion will deal with the macro
phenomena of intelligence.

In much of what follows, I will be talking within the symbolic paradigm for the reasons that I
have described in this section.

4. Current Styles of Theory-Making in AI

From the viewpoint of the paradigms of intelligence that characterize the current work in AL. at
the end of the first decade the computationalist paradigm emerged as the preferred one for much
theory making. I see the research in this paradigm in the next two decades until the contemporary
period as belonging to one of three broad groups of stances towards what a computational account
of intelligence should look like. This characterization I am about to give is a personal one, and not
(yet) part of the field's own self-consciousness; that is, it is really in the form of a thesis of what I
has been going on in the field from the perspective of a science of intelligence, and where people

have been looking for answers, and what sorts of (often unconscious) assumptions about the nature
of intelligence are implicit in these theories. Another caveat is that these theories are not mutually
exclusive, (i.e., some important ideas ideas appear in more than one approach, but with a flavor
relevant to the approach), but constitute different ways to talk about the stuff of intelligence, and
different answers to its nature. They are:

* I. Architectural theories

* 1I. Abstract logical characterization of an agent's knowledge, and inference mechanisms
that operate on this representation

* III. Theories that emphasize generic funtional processes in intelligence. Each of these
processes generates efficient inferences for a type of information processing task, and g:ves
importance to organizational issues as a major source of this efficiency.

II
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In the next several sections, I consider each class of theories and examine their assumptions about
the nature of intelligence.

4.1. Architectural Theories

Architectural theories, of which the Production System theory (Newell, 1973) is the most
prominent, are a result of a search for a level of a machine at which intelligence qua intelligence
emerges. In this section I will argue that such theories fail to relate the architecture to intelligence
in such a way that one can see the essential role played by the architecture in the emergence of in-
telligence. Their Turing universality often muddles the issue. They tend to foster a search for
solutions at the architecture level, when a more problem-specific solution would be more ap-
propriate. These architectural level solutions often have a "syntactic" feel to them in comparison
with more content-driven solutions at the higher level.

In. architectural theories the solution to the problem of intelligence is to provide a computational
architecture which is intrinsically seen as the source of intelligence. Below that level of abstraction
are presumed to lie matters of implementation out of non-intelligent processes, whereas above that
level, i.e., the content of such architectures, are agent-specific particulars of the world, the domain,
etc., not of intrinsic interest to a theoretician of intelligence, because the architecture is supposed to
provide all the necessary elements of intelligence. In particular, it is very important for these kinds
of theories that the architecture being proposed be a unitary architecture. By unitary, I mean one
level rather than multiple levels of architecture, each of which contributing some aspect of intel-
ligence.

Let me be concrete, so that it may be clearer what I mean to include in this classification.
Typically, intelligence as a whole or a large class of problems within intelligence is treated as solv-
able by representing the information processing activity in some very general scheme: production
rules, logical clauses, frames, semantic networks, or whatever. Then a basic class of inference or in-
formation processing activity on these representations is defined: forward or backward chaining in
production systems, truth maintenance (Doyle, 1979) or resolution processes for logical sentences.
various -kinds of interpreters for frames or semantic networks, and so on. Then any particular
problem, say diagn'.sis or design, is solved by attempting to program a solution using the underlying
architecture. For example, diagnosis would be treated as particular example of truth maintenance,
backward chaining, propagation of values in a network, or whatever the processes the underlying ar-
chitectures directly support. Thus the diagnostic problem is reduced to programming in a given ar-
chitecture. I will frequently use the production system architecture as an example to make our
points regarding architectural theories. The comments are meant to apply to all unitary architecture
theories.

In production systems, intelligence is viewed a- a rule processor. What the production systems are
actually implemented on -- say Lisp machines in AI or neural structures in natural intelligence --
are themselves unimportant from the viewpoint of intelligence, though they may be relevant from
considerations of engineering issues such as speed. Similarly, in this perspective, what particular
production systems contain, e.g, rules about liver diseases or about Vax configurations, is per se not
a subject matter of the science of intelligence. The inference mechanisms at the level of the ar-
chitecture -- the various chaining schemes and conflict resolution -- are however the subject
matter of this science, since those mechanisms are intrinsically and intimately related to the ar-
chitecture.

You can substitute your favorite architectural theory of intelligence-- frame systems, Logic ar-
chitectures, belief networks, etc. -- for the production system example above, and come up with a
similar analysis. The point is that the theories propose a unitary architecture as a privileged level



to capture intelligence. Whenever anyone says, "The mind is a ........ . you know that person is

proposing an architectural solution to Al. Now, among these architectures, some of them may have

more psychological evidence than others, but the problems associated with seeking the seat of intel-

ligence at one level of the architecture.

It is true that each of these architectures has been used to build impressive systems that perform

some task requiring intelligence. However, since these architectures are Turing-universal' , i.e.. any

algorithm can be implemented as a program for this architecture, it is often hard to know if the

architecture per se is performing important work. It may merely describe an appropriate implemen-
tation. The architecture, a prior%, does not distinguish tractable solutions from intractable ones. It

does not identify good vs bad ways of organizing knowledge. Also, because it is a unitary architec-

ture, it necessarily omits as constructs of the architecture important, higher level information-

processing distinctions that are needed to give an adequate functional description of intelligence and
which may require architectural support of their own. A well-known proponent of rule-based ar-

chitectures said during a lecture, "Common sense is just millions and millions of rules." One might

well respond, "Yes, and War and Peace is just thousands and thousands of sentences."

The case of metarules in production systems can be used to illustrate this point. In knowledge-

based systems work, the rule architecture was originally offered as as advantageous because it per-

mitted a knowledge-base of domain facts, and an inference engine which implemented the control of

reasoning using the facts in the knowledge base. It turned out that the control at the rule level was

inadequate to perform a wide variety of tasks, so a supposedly domain-specific knowledge base in-

creasingly acquired rules whose role was to provide the requisite control behavior and focus in

problem solving. That is, it was seen that there were phenomena essential to intelligent beha tor

that were above the rule level of architecture, but were not merely a collection of agent-spec:fic world

facts. At this point, the idea of metarules was introduced, where each metarule was a

domain-independents control rule that helped organize the knowledge base for a particular type of

problem solving activity. However, while the metarule was a way of using the rule architecture to

implement a control strategy in rule architectures, there was no obvious reason why the underlying

lesson, vtz., that we need to organixe the control and knowledge base so that the facts in" it were

used in a certain way for certain kinds of tasks, was limited to the rule architecture. Rather the

need for control knowledge in addition to domain knowledge is a lesson that can be applied to any

unitary architecture. The control vs domain knowledge distinction is a high level statement about

the content or role of knowledge and not a syntactic statement about a particular architecture. If

the desired problem solving behavior did come about as the result of the metarule, the rule ar-

chitecture was not, a priori responsible; instead, the credit should go to the particular control

knowledge represented by the meta rule. Thus the commitment to the unitary rule architecture at

first suppressed the higher level distinctions at the level of the control strategies implicit in the dif-

ferent metarules. While metarules had the germ of the idea that intersting control issues were being

given short shrift in rule-based approaches, it is interesting that until Clancey's work (Clancey,

7 There is nothing in this argutment that turus n wh,.th.r or not intelligenice ran he accounted for hy Turing-
,-onsputable functions only.

aThe word "domain" is a possible source of confusion. i Al. the t .riu his ,ouie to refer almost exclusively t,,

what one might call specific subject matter- or a collectinn .f facts abtut .% nijiuworld -- such as nielicine. whereas

in mlany philosophical liscussious about mind. I have seen the t-ri, refer to my geueric faclilty such 4s visual percep.

tiou or -yen tasks such ad iiatutral language uaderstasiding or 'jitgiost r.is njg. In this paper. I will iise the trsu

to it has ,.eo'me fanliar in Al. The asduna pthiot is thlat t) th-.'ry .. f Inti'lli ell. Utaed spe' ifically . al with ilte.hi .i l

facts per se. hut it will n.e.l io deal with phet.,usd1 t Ih is lint!,.,,Sti, prb) hiu, ,Ivilir .. r nttitral lalu cnage liuIlcr-
statding.
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1 1984), the syntactic aspect of metarules, not their content, dominated the discussion in rule-based
system discussions. Thus much of the discussion on metarules emphasized their syntactic properties.

* i.e., were a contribution to rule programming. This concern with converting higher level content
phenomena into syntactic solutions at the architecture level is what I mean by suppressing higher
level distinctions. Another example, with somewhat serious consequences in my view, is also from
the rule-based architecture example. One of the problems that arises in this architecture when the
knowledge base is very large is that a large number of rules "match" a given situation., with con-
flicting actions proposed by each of the rules. The processor has to choose one of the rules and
pursue the consequences in terms of the inferences that follow. A new problem called the "conflict
resolution" problem was formulated, and a family of essentially syntactic resolution strategies
proposed, such as "Choose that rule which has more left hand side terms matching, ".. has irore
goals on the right hand side", or "...has a higher certainty factor," etc. In truth, I claim that
conflicts of this type are artifacts of the architecture, and there are higher level organizational
phenomena that actually constrain only a portion of the knowledge base to be active in the first
place, thus obviating the need for syntactic conflict resolution strategies.

3 While I have used rule architectures as examples in my discussion above, the points made are
more general, and apply to unitary architectures in general. Retrieval theories based on semantic
networks tend to explain differential retrieval by positing that they are due to distances measured in
the number of links rather than the types of links and the knowledge embedded in the nodes and
links. These unitary architectures encourage theory making at the wrong level of abstraction.

The end of this section is probably a good place to make a number of clarifications.I The above arguments are not directed against the existence of appropriate architectures
on which to implement intelligent information processing systems. In principle, it is even
possible to hold that all higher level phenomena of importance can be implemented on
the architecture at one particular level in such a way as to give some significant perfor-
mance or construction advantages. What is being argued is that seeking a unitary ar-
chitecture as the single answer to what makes intelligence is fraught with the problems
that I have described, and misstates the nature of intelligence. I doubt that there is one
level which can be identified with the emergence of intelligence. On the other hand, the
discussion about whether rule architectures or alternate architectures properly capture the
human information processor at or' level of abstraction is not vacuous: it is a relevant
and useful question. It is also important to state that researchers who have been inves-
tigating these architectural questions, e.g., Newell and Simon in the case of rule- ar-5chitectures, do not themselves necessarily reduce all higher level issues in intelligence to
syntactic aspects of their particular architectures. It is an empirical fact, however, that
these architectures do foster a unidimensional view of intelligence, resulting in important
higher level questions being ignored or treated as mere programming issues at the ar-
chitecture level as in the example of metarules that I discussed.

I I mentioned frame architectures as another example of unitary architectures. This is not
an argument against "frames" as a functionally useful construct for intelligence; in fact,
in a Section 4.5, I will offer the frame theory as an example of the right kind of theory-
making in Al. In all of the discussions in this section, my argument has been against a
style of theory-making which converts such a theory into a universal architecture.

* The arguments in this section are not meant to be against the idea of architectures to
support intelligent computation. In Section 4.5 1 argue that intelligent information
processing comes as a variety of functional types, each of which is supported by a local
"mini" architecture. Form follows function, in this as in many other designs, natural ori artifactual. Thus the suggestion is that instead of fixing on one form (even if true at

I
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some level), it is more productive to identify functions and then look for forms to sup-
port them.

4.2. Theories of Intelligence Based on Abstract Logical Characterization of Agents

In many circles some version of logic is thought to be the proper language of characterizing all
computation, and by extension, intelligence. By logic is meant a variant of first order predicate
calculus or at least a system where the notion of truth-based semantics is central and inference-
making is characterized by truth-preserving transformations.' The way logic has actually been used
in Al however combines a number of distinct roles that logic can play or can be claimed for it.

We can begin by noting two broad roles for it:

1. logic for abstractly characterizing and analyzing what an agent knows, vs

2. logic as a representation for knowledge, and logical deduction as the basic information
processing activity in intelligence.

First of all, there seems to be a general tendency, even among those who do not adopt the logic
paradigm for knowledge representation and inference, to concede to logic the status as the ap-
propriate language for the abstract characterization of an agent, i.e., for meta-Al analysis. While
this seems like one good possibility, this does not seem to me the only or even a compelling pos-
sibility. Standing outside an intelligent agent, one can take two distinct abstract stances toward it:
the agent as a performer of functions, or the agent as a knower of propositions. There are Al
proposals and work that correspond to both these viewpoints. In Marr's work on vision (see Section
3.6), e.g., the agent is characterized functionally, i.e., by an information processing task that trans-
forms information of one kind into that of another kind. On the other hand, the tradition in
logic-based Al is one of attributing a body of knowledge to the agent. It is certainly not obvious
why the knowledge view should necessarily dominate even at the level of abstract characterization.
I will hold later in this paper that the functional view has superior capabilities for abstract

specification of an intelligent agent.

The idea of abstract characterization of an intelligent agent through logic was ir'st detailed by
McCarthy and Hayes (1969) where they proposed the now-famous eptstemic-heunstic decomposition
of an actual intelligent agent. This distinction has echoes of the Chomskian competence/performance
distinction in language. (See (Gomes and Chandrasekaran, 1981).) The agent as a knower is
characterized by the epistemic component. What kinds of knowledge are to go into the epistemic
component is not clear, but one would think that would depend on the theorist's view of what
kinds of knowledge characterize intelligence. Thus it must represent a theory of the ontology of the
mental stuff. The heuristic part is that part of the agent which actually makes him an efficient
information processor, using the knowledge in the epistemic part to solve problems and do whatever
intelligent agents do. An analogy would .be that a calculator's epistemic part would be the axioms
of number theory, while its heuristic part would be the particular representations and algorithms.
This example also makes clear the relationship of the epistemic/heuristic distinction to the
competence/performance distinction of Chomsky. McCarthy and Hayes proposed that the epistemic
part be represented by a logical calculus, and in fact discussed the kind of logic and the kinds of
predicates that would be needed for adequacy of representation as they conceived the epistemic part.
In this attempt to separate the what of intelligence with the how of implementation, the McCarthy-

91 -ti lmz this chavrvt~r r i oii t is not arctirate in .]prails I ti -l l t hat there things sich 4 s "inper:tiv- loiew.
w i-r- s,'mie *f the th ov -liar.vterizAti,,i ta tii tIt Ii, l ,1 v,.,l. W iimn AL. mi, ii csin moy s i¢ logic " re.. x % thim ,nit li

pr.-servihia rewqiretume t its trmisf' -rm ittiomis. I helieve thm rie t hriLst If i1Ay Atrxiiiuo- It s usverthrl~ss re1114tlim vAlil
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Hayes proposal follows a more general idea in computer science, but identifies the what with the
propositional knowledge of the agent. This is not, however, neutral with respect to consequences.

Now it is interesting to note that the epistemic/heuristic distinction as a means of separating the
essential content of an agent from the implementation details and "mere" efficiency considerations is

independent of logic as a representation. As just mentioned, this kind of separation is a strong
tradition in computer science, at least in proposals about software engineering, if not in practice.
All that the epistemic/heuristic distinction demands is that the essential characterization of an in-
formation processor be kept separate from the implementation details. Logical representation of the
epistemic part is only one alternative for doing this. As I mentioned, within Al. an alternative to
McCarthy and Hayes' suggestion is Marr's proposal that this distinction be carried out by separating
the information processing task (the input-output specification), the algorithm carrying out the task.
and the mechanism by which the algorithm is implemented.

Even more important is that there is no self-evident way of deciding, in a theory-neutral fashion,
exactly what is epistemic, and what is merely heuristic. One person might dismiss some aspect of
an intelligent agent as merely heuristic (e.g., search control knowledge which helps in efficiency),
while another person's theory might hold that that is precisely where the secret of intelligence lies,
and thus would make it part of the epistemic component. The epistemic/heuristic distinction does
not force one into an agreement about what entities ought to end up in which component. In fact,
in some logical theories in Al, some important control phenomena have been moving from the
heuristic component to the epistemic component, as a consensus builds in Al that a certain
phenomenon is really not simply heuristic, but part of the stuff of intelligence. A good example of
this is the development within the logic camp of families of default or nonmonotonsc logscs. It is
interesting to trace the history of default logics within the logic paradigm in AL.

Now, Minsky's paper on frames (Minsky, 1975) argued against the "atomic" stand about
knowledge that logic-based Al theories took, and claimed that chunking of knowledge into "frames"
had a number of useful properties. In particular, if frames could stand for stereotypes of concepts,

it was possible to do a form of default reasoning, where in the absence of specific information to the
contrary, a reasoning system would assume default values associated with the features of a frame,
thus allowing missing information to be plausibly inferred, greatly decreasing storage requirements
(only non-default values, i.e., exceptions, need to be stored), and increasing retrieval speed. At first
blush, all these useful properties were "heuristic" aspects, i.e., how to get the computation done
faster, and thus one would think not of intrinsic epistemic interest. However, when the consensus
started to develop that this form of default reasoning was one of the essential aspects of being in-
telligent, defaults became part of the epistemic component of AL. That is, theorists started
hypothesizing the existence of something called "default reasoning" or "nonmonotonic logic" in order
to account for this phenomenon in a rigorous way. Similarly, as builders of Al systems discover the
utility of organizational constructs such as "plans" (which are abstract, partial solutions to
problems, stored by the agent, typically indexed by the goals they help achieve), one finds that new
epistemic theories such as plan logics get proposed and investigated. It is almost as if the lowly
"heuristic" component is in fact what the action in Al is often about, while the epistemic part ap-
propriates the nuggets of organizational wisdom that research in the heuristic component identifies.

Now of course there is nothing wrong with this as a way of making scientific progress: Let the
system builders discover phenomena experimentally and let the theoreticians follow up with for-
malization. However, the eventual success of this kind of formalization is questionable. Is there in
fact a set of inference rules that compactly characterize all and only default inferences? I propose

that terms such as "nonmonotonic logic" are reifications: a complete account would require
specification of a much larger set of rules than what is normally thought of as inference rules; so
large as to be virtually coextensive with the entire set of distinct types of functions in which frames
get used: scripts, plans, etc.



The distinct notions of abstractly characterizing an intelligent agent, viz., the epistemic heuristic 3
distinction, and logic as a representation for the epistemic component, are often conflated. I just

commented on how uncertain the actual allocation of information to the epistemic and heuristic

components can be. Now I need to make some remarks on logic as a representation for the epis- 3
temic component.

4.3. Logic for Representation 3
The proposal to use logic for representation of knowledge could be in the service of two rather

different purposes: one, in order to reason about the agent and two, to model the reasoning of the

agent. The former is in the spirit of certain ideas in computer science where a program may be in

any appropriate language, but reasoning about the program, e.g., to establish its correctness. is often

done using logic. However, in practice, almost all use of logic as knowledge representation in Al

has been in the service of the latter, i.e., to actually create reasoning agents.

Logic as knowledge representation makes a serious commitment to knowledge as propositions, and

to True/False judgements as the basic use of knowledge. It is also closely connected to the belief

that the aim of intelligence is to draw correct conclusions. In this view, what human beings often

do, e.g., draw plausible, useful, but strictly speaking logically incorrect conclusions, is interesting as

psychology, but that only shows up humans as approximations to the ideal intelligent agent, whose

aim is to be correct.

A little digression about the nature of the ideal intelligence may be appropriate here. I believe
that there has been a problem in Al due to two different senses of the word "intelligence." There

is the technical sense of intelligence as the information processing activities engaged in by, possibly

among others, human beings, and which is the goal of Al to understand and capture. There is

another sense in which intelligent really refers to "very intelligent," i.e., some one who has been I
especially impressive in his or her cerebration. At least in the current western milieu, this latter

quality would be denied to someone who, after all the work of thinking, was not correct in the

conclusions that were drawn. Ever since late 19th century, when the foundations of mathematics

showed tracks and there were considerable worries about how to be sure if conclusions were correct,

which in turn push~d symbolic logic to its current rich technical accomplishments, logical reasoning

has been equated with the real test of thought, vide the title of Boole's book, Laws of Thought. In

addition, the content of consciousness seems to include a series of propositions, some of them beliefs, I
and at least for a certain kind of theorist, it seems entirely natural to model thought itself as basi-
cally manipulation of propositions and generation of new ones. In this view of thought, stream of

consciousness imaginings, half-formed ideas, vague sensations at the back of the mind, how a cer-

tain idea suddenly came to occupy consciousness from the depths of the mind, etc., etc., do not
count as serious subject of study from the viewpoint of intelligence as such. Hence the almost un-

conscious equation of thought with logical thought, and the natural attempt to seek in logic the I
language of representation and construction of the idealized agent.

Now, is "truth" in fact the right kind of basic interpretive framework for knowledge? Or are no-
tions of functional adequacy, i.e., knowledge that helps to get certain kinds of tasks done, or the I
related notions of plausibility, relevance, etc. more effective in capturing the way agents in fact use
knowledge? My 16-month old daughter, when shown a pear, said, "apple!." Is it more than mere
parental pride that makes me attribute a certain measure of intelligence to that remark, when,

viewed strictly as an utterer of propositions, she told an untruth? What kind of a theory of intel-
ligence can explain that her conclusion was adequate for the occasion: she could get away with that

error for most purposes -- she could eat the pear and get nourishment, e.g. -- while an equally I
false proposition, "It's a chair," would not give her similar advantages? I

I
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A number of theoretical advantages have been claimed for logic in Al, including prectsion and the
ezistence of a semantics. The problem is that the semantics are not at the most appropriate level
for the problem at hand, and logic is neither a unique nor a privileged way to be precise.

4.4. Intelligence Has Other Functions Than Correctness

Laws of justification are not identical to laws of thought, Boole notwithstanding. While it would
be useful for an intelligent agent to have the former laws and apply them appropriately, those laws
alone cannot account for the power of intelligence as a process. It seems highly plausible to me
that much of the power of intelligence arises not in its ability to lead to correct conclusions, but in
its ability to direct explorations, retrieve plausible ideas, and focus the more computationally expen-
sive justification processes where they are absolutely required. Thus the power of intelligence really
resides in what has been called the heuristic part, and theories of intelligence will need to be
theories of that part of the decomposition, the part that is most concerned with computational
feasibility. This is why organizational theories such as the frame theory, planning, and theories of
memory, find their important ideas migrating to the epistemic side, which by definition, in the logic
framework, is supposed to worry about the real essence of intelligence. What is interesting is that
the pressure of discoveries in the heuristic side comes from efforts to actually construct intelligent
artilacts. To the extent that explanation of intelligence as a computational phenomenon is treated
within AI as the capability to construct intelligent artifacts, it is significant that it is this so-called
heuristic side that has been the source of important discoveries about how the intelligent information
processing can be controlled. Abstraction in the manner proposed by those who advocate logic
separates knowledge from its function, and this leads to missing important aspects of the form and
content of knowledge.

It is often argued that the epistemic/heuristic distinction is tactical: get the terms needed right,
before worrying about how to actually use them in reasoning. For example, before building, say,
common sense reasoners, let us get all ontology of common sense reasoning right: "know," "cause,"
etc. The thrust of my argument is that, as a rule, a use-independent study of such terms is likely
to make distinctions that are not needed by the processing part and miss some that are.

This is not to say that logic, as a set of ideas about justification, is not important to intelligence.
How intelligent agents discover justifications and how they integrate them with discovery procedures
for a final answer that is plausibly correct, and how this done in such a way that the total com-
putational process is controlled in complexity are indeed questions for AI as an information process-
ing theory of intelligence. In this view logic is a brick intelligence builds, rather than the brick out
of which intelligence is built.

The laudable goal of separating the knowledge necessary for intelligence from the implementation
details needs in my opinion to be achieved by concentrating on the functional characteristics of in-
telligence. This brings me to the third set of theories.

4.5. Generic Functional Theories of Intelligence

The theories that I discuss in this section identify a generic, functional property of intelligence
which is used to solve a "natural kind" of cognitive problem. Examples of such theories are: the
GPS means-ends theory of problem solving (Newell and Simon, 1972), the Frame theory of
knowledge organisation (Minsky, 1975), Schank's CD, Script (Schank and Abelson, 1977) and
memory theories (Schank, 1982), our own work at Ohio State on generic types of problem solving
(Chandrasekaran, 1983; 1986; 1987). These theories typically emphasize some organizational aspect,
which facilitates some particular class of inferences, or computations, or constructions in a computa-
tionally efficient way. An abstract description of these processes would be replete with terms that
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carry an information processing strategy connotation, such as default, .oals. subgoals, ezpectation. 3
plans. and classification. Knowledge of an agent is encoded using such terms. Each of these

processes -- the inference mechanisms along with the knowledge structures -- constitute what we

call a generic information processing strategy. Each captures a functional unit of intelligence as a 3
process, and is generic in the sense that it is domain-independent." '

In this section. I briefly discuss some of the well-known theories of this genre. In particular. I

,onsider such strategies in knowledge-based problem solving.

Let me recapitulate some of the theories that I mentioned at the beginning of this section.

" The General Problem Solver. GPS says that a generic process available to intelligence is
to treat problems in a goal/subgoal manner. In this way. the ends, i.e., the goals. of the

problem solver, are matched to the means, the operators available. The agent has to

have knowledge organized in a certain way, which gives information about relationship I
between goals, operators, etc., and a particular inference process (or control regime) called

the means-ends algorithm is needed to use this knowledge to solve the problem. Note

that the means-end method is not implicit in the problem statement, i.e., a purely logi- I
cal analysis merely would specify a problem space in which the solution would lie. On

the other hand, means-ends is not a particular solution algorithm for a particular

problem. It is a generic information processing strategy that can be used provided that

knowledge is available in a certain form.

* The frame theory. It proposes that the generic functional properties of "chunking" and
"stereotyping" are important phenomena in knowledge organization. These features of I
the organization enable an important type of inference process called default reasoning to

take place by using the default expectations implicit in the idea of stereotypes. Chunking

and stereotyping are computationally efficient mechanisms, both for memory and for
processing.

" Schank's conceptual dependencies and script theories. These are in the spirit of frame

theory, but they propose contentful additions that are appropriate for certain classes of

problems. CD's are particular kinds of chunks that represent action stereotypes, and en-

able default inferences about actions associated with verbs to be made efficiently during

natural language understanding. Scripts are frames representing stereotypical action se- I
quences, which enable expectations to mediate understanding. Both these notions (and
other similar constructs in Schank's theories of memory organization) use expectations

arising from stereotypes of phenomena as efficient means of computing some information I
about the situation.

" Plans: these are compiled, abstract, partial solutions to problems, indexed by goals.

Agents which use them cut down the search for solutions enormously, again a "heuristic" i
advantage, but mirrored in knowledge so deeply that it becomes epistemic in character.

See (Miller, et al, 1960). 3
" Memory Organization & Retrieval: Agents index, store and retrieve relevant events of

their experience in such a way that th.y provide, among other capabilities, a method of

reasoning (by analogy with past even! g.) The work of Schank's group proposes a I
number of types of memory chunks an exing schemes.
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3m * Generic Tasks: In our own work on knowledge-based reasoning, we have proposed a

number of information processing strategies, each of which is characterized by knowledge
represented using strategy-specific primitives, and organized in a specific manner. Each
of the strategies also employs a characteristic inference procedure which is appropriate to
the task. By showing how these strategies help in solving a computationally complex

problem such as diagnosis, I hope to suggest how strategies of this kiid characterize in-
telligence. The role of a specific set of generic strategies in diagnosis is the subject of

the Section 4.6.

S 4.6. Generic Information Processing Strategies in Diagnostic Reasoning

Formally, the diagnostic problem can be defined as follows: Find a mapping from the set of all

subsets of observations of a system, to the set of all subsets of possible malfunctions, such that the

malfunctions in the subset best explain the observations.

A mathematician's interest in the problem would be satisfied once it can be shown that under

certain assumptions this task is computable, i.e., an algorithm exists to perform this mapping. He

might even further wish to derive the computational complexity of this task for various assumptions
about the domain and the range of this mapping. This directly leads to A[ algorithms of a set-3 covering variety for diagnosis (Reggia, et al, 1985).

A logician would consider the solution epistemically complete if he can provide a formalism to list

the relevant medical facts and formulate the decision problem as deducing a correct conclusion.
Some diagnostic formalisms, such as the ones based on truth maintenance systems, view the diag-

nostic problem as one more version of truth-maintenance activity (Reiter, 1987).

Now, each of these methods is computationally quite complex, and without extensive addition of

knowledge as "heuristics", the problem cannot be solved in anything resembling real time. It is

clear, however, that the abstract problem is one that faces intelligent agents on a regular basis: how
to map from states of the world to their explanations? From the tribesman on a hunt who needs to

construct an explanation of observations on the jungle ground to a scientist constructing theories,
this basic problem recurs in many forms. Of course, not all versions of the problem are in fact

solved by humans, but many versions of the problem, such as medical diagnosis, are solved quite

routinely. Presumably something about the agent as an intelligent information processor directly
plays a role in this solution process.

Because of our concern in this paper with the structure of intelligence, instead of looking for solu-
tions to this problem in particular domains (such as simple devices, where perhaps tractable al-

gorithms -- e.g., direct-mapping tables that go from symptoms to, diagnoses -- might exist and

be programmed), let us ask the following question: What is an intelligence that it can perform this

task? That is, we are interested in the relation between mental structures and the performance of
the diagnostic task. The distinction that we are seeking can be made clearer by considering mul-
tiplication. Multiplication viewed as a computational task has been sufficiently studied that very

fast and efficient algorithms are available, and are routinely used by today's computers. On the
other hand if we were to ask, "How does a person (e.g., an arithmetic prodigy) actually perform

multiplication in the head?", the answer will be different from the multiplication algorithms just

mentioned. The answer would need to be given in terms of how the particular problem is solved
by using more generic mental structures. Now, of course, the answer would differ depending upon

one's theory of what those mental structures are.

I have already indicated what kinds of answers to this question would be fostered by unitary ar-

chitectures: In rule-based architectures, the problem solver will simply need to have sufficientI
U



number of rules about malfunctions and observations, frame-theorists would propose that diagnostic
knowledge is represented as frames representing domain concepts such as malfunctions, etc. The in-
ference methods that are applicable to each of the above are fixed at the level of the functional ar-
chitecture: some form of forward or backward chaining for rule systems. and some form of in-
heritance mechanisms and embedded procedures for frame systems. I have argued elsewhere how
this level of abstraction for control is at too low a level to perspicuously encode the inference
processes that apply at the level of the task, i.e., diagnosis. (Since all these architectures are
computation- universal, they can be made to encode whatever diagnostic algorithm the designer has
in mind, but the ideas underlying the algorithms are "lost" as code at these levels, rather than ex-
plicitly supported by the architectural constructs.) This level of representation suppresses what iS
distinctive about diagnosis as a set of domain-independent information processing Strategies. See
our earlier arguments regarding syntactic solutions at the architectural level.

In our work on knowledge-based reasoning, we have identified several generic strategies, each with
a well-defined information processing function. Each of them uses knowledge in certain forms, or-
ganized in certain ways, and employs inference strategies that are appropriate to the task. We have
described, in a series of papers. how these strategies can be used in different combinations to put
together diagnostic or design systems. In the rest of this section, I want to describe briefly how
three strategies of the above-described type can come together to solve a number of real world ver-
sions of the diagnostic task.

In many domains knowledge is available in the form of malfunction hierarchies (e.g., disease
hierarchies in medicine) and for each malfunction hypothesis in the hierarchy, a mapping from ob-
servations to the degree of plausibility of hypothesis can be done using a strategy of concept
matching. In concept matching, a concept is matched to data by a hierarchy Qf abstractions, each
of which produces a degree of local match, In such domains, the diagnostic problem can be
decomposed into three subproblems (Chandrasekaran, 1986; Josephson, et al, 1987):

1. Hierarchical classification: A classification process on the diagnostic hierarchy is invoked.
At the end of the classification process a set of tip nodes of the diagnostic hierarchy are
"established" to some degree of plausibility, each explaining a set of observations. In the
medical domain, these tip nodes will correspond to specific diseases or in the case of
mechanical systems, they may be malfunctions of specific components.

2. Concept-matching: Each of the hypotheses in the classification process is evaluated by
appealing to the appropriate concept-matching structures which map from relevant data
to symbolic confidence value for that hypothesis.

3. Abductive Assembly: The classification process (in conjunction with the concept
matchers) terminates in a small number of highly plausible hypotheses, each explaining a
subset of observations. An abductive assembly strategy, which uses knowledge about in-

tercation among malfunctions, can be used to assemble a subset of them into the a com-
posite hypothesis that best explains all the data.

Under the right conditions of knowledge availability, each of the above strategies is computation-
ally tractable. In hierarchical classification, entire subtrees can be pruned if a node is rejected. The
mapping from data to concept match:Ag can be done by hierarchical abstractions giving concept
matching a similar computational advantage. Abductive assembly can be computationally expensive,
but if some other process can prune the space and generate only a small number of hypotheses to
begin with, then its computational demand can be kept under control. This is precisely what
hierarchical classification does in the above scheme.

The original intractable problem has been converted, by a series of information processing



strategies and by appropriate types of knowledge and control, into a tractable one, for those versions
where knowledge of the required form is available.

Classification as a strategy is ubiquitous in human reasoning because of the computational ad-
vantages of indexing action knowledge over equivalence classes of states, instead of the states them-
selves. How classification hierarchies are created -- from examples, from other types of knowledge
structures, etc. -- requires an additional set of answers. I have discussed elsewhere
(Sembugamoorthy and Chandrasekaran, 1986) how knowledge of the relationships between structure
and the functions of components, i.e., how the systems work, can often be used to derive such mal-
function hierarchies. These processes in turn are generic, requiring knowledge in -specific forms and
using appropriate but characteristic inference strategies.

Let me make something quite clear at this point. The claim is not that diagnosis is logically a
classification problem, or even that all human diagnostic reasoning uses classification as one of the
strategies. What I have attempted to show is that many version of the diagnostic problem can be.
and often are, solved by having knowledge in forms that this and other generic strategies can use.
If that knowledge is not available, either other strategies that can generate knowledge in that form
are invoked, or other strategies that can help solve the diagnostic problem without classification

hierarchies are attempted. In particular, strategies such as reasoning by analogy to an earlier case,
or merely retrieval of similar cases and explaining the differences by adding, deleting or modifying
diagnostic hypotheses are tried. In fact, as mentioned earlier, the whole collection of retrieval
strategies (Schank, 1982) are themselves information processing strategies of the functional kind that
I have been talking about.

4.7. Functional Theories: Heuristic Becomes Epistemic

What I have so far called functional theories within Al -- GPS, frames as stereotypes, conceptual

dependency theory, scripts, and generic tasks in problem solving -- all have this in common: They
all typically emphasize some organizational aspect and facilitate some particular kind of inference or
construction in a computationally efficient way. In other words, computational feasibility -- the
so-called heuristic component -- is built into this kind of theory making. Organization serves
directly in securing computational feasibility. A direct epistemic analysis of the underlying problem
would typically miss these constructs. Once you discover them you can go back and start doing
epistemic analysis on them, but basically the way of discovering them is not by simply taking an

epistemic stance toward them (here I use "epistemic" in the McCarthy-Hayes sense of the term).

Another important thing about this with respect to knowledge is that each of these approaches
provides primitive terms for encoding the relevant knowledge. GPS proposes that some of the
knowledge ought to be encoded in the form of goals and subgoals. The conceptual dependency
primitives are provided from the CD theory. Our work on generic tasks has resulted in a family of
languages, each of which provides primitives to capture the knowledge needed for that one of the
generic strategies. In my view, these primitives constitute part of the vocabulary of the language of
thought.

The search for such strategies as the basic task of research in Al in fact defines a new view of
epistemics: It is the abstract characterization of such strategies and the corresponding types of

knowledge. Such an abstract description of these processes would be replete with terms that carry
an information processing strategy connotation, such as default, goals, subgoals, expectations, plans,

and classificatson.
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5. A proposal on the Nature of Intelligent Information Processing

I have given an overview of the three kinds of theories that have been advanced about the nature

of intelligence L:

" architectural theories

" logical abstraction theories, and

" functional theories

and indicated a clear preference for functional theories. I would now like to generalize this
preference into a proposal about the nature of intelligence.

The Proposal

Intelligence is a coherent repertoire of generic information processing strategies, each of which

solves a type of problem in a computationally efficient way, using knowledge of certain types, or-
ganized in a specific way, and using specific and locally appropriate control strategies.

What is common, as intelligent agents. between Einstein, the man-on-the street, the tribesman

on a hunt, and, probably, intelligent Alpha-Centaurians (if such things exist) is that they all face
very similar computational problems, and the kinds of solutions that they adopt for these problem

have an essential similarity. They all use plans, indexed by goals, as efficient means of synthesizing
actions, they all use some version of scripts and conceptual dependency primitives to organize their

inferences, they all use classification strategies to match actions to world states, etc., etc. Of course
the strategies that we may discover by studying human information processing may not be -- and

in all likelihood is not -- coextensive with the general class of such strategies. That would be too
anthropomorphic a view of intelligence.

The task of Al as the science of intelligence is to i'entify these strategies concretely, and under-
stand how they integrate into coherent wholes.

In a sense this approach can be called abstract psychology because it doesn't discuss a particular
human being or even class of human beings. What it says is that the description of cognitive

strategies provides a language in which to describe intelligent agents. And also, I think, it is con-
sistent with the view of intelligence as a biological, evolvable collection of coherent 'kluges' that
work together. So intelligence is not really defined as one thing -- architecture or function -- it

is really a collection of strategies. The fact that the strategies all contribute to computational

feasibility distinguishes them as a characterizable class of information processes.

Some qualifying remarks about the scope of my discussion are perhaps necessary. Almost all my
discussion has emphasized cognitive phenomena in contradistinction to perceptual phenomena. Ob-

viously the role of knowledge and control in perception is a much different issue than in cognition.
In general, I have not included in my discussion what Fodor (1983) calls nput modules (as opposed
to central processes): his modules include some aspects of parsing in language, e.g. The spirit of
what I say in this paper can be extended to these other phenomena, I believe. But that is a task

for another day.

S pe ifically. ':,hut the iature ,.f "tti.a.'r, ' ph l , i, ii-,- i ii it , lhi . . sitici- I have wc knowledged that
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* 6. Concluding Remarks

In this final section, I would like to make some remarks about the relationship of functional

theories to architectural and abstract characterization theories.

Some of the intuitions behind the architectural theories and abstract characterization theories ire

in fact valid and useful, but theory-making of these kinds can be enhanced by asking questions of

the functional kind first. In particular, considering architectural theories first, it is probably true

that there does exist an architecture at which mental phenomena can be particularly appropriatelySimplemented. Certainly in the case of human intelligence there ts some level to which the infor-

mation processing architecture question can be reduced: if needed, to the neuronal information

processing level: possibly to what connectionists call the subsymbolic level; preferably to the level of

something like a rule architecture. Certainly I don't intend to argue against the existence of that

level of the architecture and its properties. However, the content phenomena of intelligence a- a

computation are not expressed at that level, and require an analysis at the functional level as I3 have indicated.

There is another aspect to the architectural issue. To the extent that each of the strategies uses

knowledge primitives, and comes with its own inference methods, a local architecture can be as-

sociated with it. For example, we have developed a family of high level architectures (or. it comes

to the same thing, languages) for the generic information processing strategies that we have iden-

tified: a language called CSRL (Bylander and Mittal, 1986) supports hierarchical classification and

structured concept matching, PEIRCE (Punch, et al, 1986) supports abductive assembly, and so on.

The information processors built using these architectures can exchange the results of their computa-
tion with each other.

3 The functional orientation that I have advocated makes possible a new approach to mental ar-

chitectures which are nonunitary, i.e., intelligence is conceptualized as a community of "specialists",

each of which is an instance of a functional type of knowledge/inference system, communicating with

other such entities. In fact our own group's work on problem solving has been implemented using

precisely this notion of a nonunitary architecture. It needs to be reiterated that this notion does

not argue against the whole set of them being implemented on a lower level unitary architecture,

such as a rule architecture. It merely talks about the importance at the conceptual level of not

being driven by the unitary architecture notion for all the reasons that we elaborated in Section 4.1

on this subject.

3 Similarly, the functional theories suggest a new approach to epistemics. They do not argue

against the importance of characterizing intelligence independent of incidental implementation con-

siderations (neurons vs transistors, e.g.), or of agent-specific heuristic knowledge (such as the

knowledge that a particular agent might have, e.g., "When considering malfunctions in an electronic

circuit, always check the power source first.") It is just that this approach proposes an alternative

basis on which to make the abstract characterization. I propose that we ask, "What kinds of

processes do intelligent agents perform?", rather than, "What kinds of things do they know?" as the

starting point. The claim is that what they need to know in order to do the tasks in fact provides

a new way of doing the epistemic analysis of an agent in the abstract. At the very least, func-

tional theories provide the content information about intelligence as computation that needs to be

specified abstractly.

Intelligence as we know it is (so far) a biological phenomenon, rather than a logical or math-

ematical phenomenon. A comparison is often made between intelligence and flight, and people who

would build flying machines by basing them on birds usually come off looking not so good in this

comparison. The problem with that analogy is that flying is one (rather well-defined) function.

I
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while intelligence is not characterized by one function. A better analogy would be with under-
standing life: all we know about life is that it is what biological phenomena pertain to. Any par-
ticular aspect of life, e.g, self-reproduction, can be studied mathematically, but there has been pre-
cious little so far to show for such studies from the viewpoint of understanding biology. Intelligence
is not only analogical to biology, but is, as a phenomenon in nature, so far exhibited in biological
organism of certain complexity. The actual content of information processing phenomena of intel-
ligence is bound to be rather complex. What is biological about the proposal in this paper is that
intelligence is explained as part evolutionary, part cultural, part life-time interaction and integration
of a number of elementary strategies into more and more complex strategies, but all of them are
united by this basic concern with computational feasibility for generation of plausible solutions,
rather than with deductive correctness. To see biological intelligence as a mere approximate attempt
to achieve logical correctness is to miss the point of intelligence completely. Of course there are
processes in intelligence tiat over a long period of time and collectively over humankind help to
produce increasingly higher fidelity internal representations. but that is just one part of being intel-
ligent, and in any case such processes are themselves subject to computational feasibility constraints.
Once highly plausible candidates for hypotheses about the world are put together by such processes
(such as abductive assembly that might be used in producing an explanation in science), then ex-
plicit justification processes may be used to verify them.
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I Abstract

The level of abstraction of much of the work in knowledge-based systems (the rule, frame, logic
level) is too low to provide a rich enough vocabulary for knowledge and control. I provide an overview of
a framework called the Generic Task approach that proposes that knowledge systems should be built out
of building blocks, each of which is appropriate for a basic type of problem solving. Each generic task
uses forms of knowledge and control strategies that are characteristic to it, and are in general
conceptually closer to domain knowledge. This facilitates knowledge acquisition and can produce a more
perspicuous explanation of problem solving. The relationship of the constructs at the generic task level to
the rule-frame level is analogous to that between high level programming languages and assembly
languages in computer science. I describe a set of generic tasks that have been found particularly useful
in the constructing diagnostic, design and planning systems. In particular, I describe two tools, CSRL and
DSPL, that are useful for building classification-based diagnostic systems and skeletal planning systems3respectively. I describe a high level toolbox that is under construction called the Generic Task toolbox.

1 Need for Task-Specific Tools
The current generation of knowledge-based system (KBS) languages - those that are based on

rules, frames, or logic -- do not distinguish between different types of knowledge-based reasoning. For
example, one would expect that the task of designing a car would require significantly different reasoning
strategies than the task of diagnosing a malfunction in a car. However, these methodologies apply the
same strategy (fire the rules whose conditions match, run resolution engine on all propositions etc.) to
both design and diagnosis, as well as any other task. Because of this, it has been argued that these
methodologies, although useful, are rather low level with respect to modeling the needed task-level
behavior. In essence, these systems resemble an assembly language for writing KBS's. While they are
obviously useful, clearly approaches that more directly address the higher level issues of knowledge-
based reasoning are needed for the next generation of Al system development.

3 One example of a higher level approach is the generc task (GT) (9, 10, 121. The aim here is to
identify "building blocks" of reasoning strategies such that each of the types is both generic and widely
useful as components of complex reasoning tasks. We have identified a number of such generic
strategies, which together capture the functionality of a large portion of current expert systems. Each
generic task2 is characterized by:

1. The kinds of information it takes as input for the task and the information produced as a

result of performing the task. This defines the functionality of the task.

1 2. A way to represent and organize the knowledge that is needed to perform the generic task.

This includes a vocabulary of knowledge types, i.e., knowledge constructs that the

representation language should have.

3. The process (algorithm, control, problem solving) that the task uses. This provides a

I vocabulary for inference and control for the task.

The GT framework proposes that, as each task and its associated structure is identified, languages

2Each GT is a sae from the viewpoint of the probiem which it is heling to solve. It is a task trom the vewpoint of the
functinality that is to be achieved by th GT. It is in this sense that a GT is both a strategy for a task and a tak in its. This
distinction is in fact much more general: e.g., diagnosis is a strategy in making patients feel better (i.e.. one way to organize
therapeutic actions a to base them on causes, finding which is in fact, diagnosis), but it is a task which many expert systems are
designed to solvo.

I
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be developed that encode both the problem solving strategy and knowledge that is appropriate for solving 3
problems of that type. These languages facilitate KBS development by giving the knowledge engineer
access to tools which work closer to the level of the problem, not the level of the implementation language
such as rules or frames. However, for nontrivial problems it may be necessary to decompose it into
subproblems such that each matches the functionality of some GT. For example, we will show how
certain kinds of diagnostic problems can be decomposed into a number of GT's. This way of building
complex KBS's also means that knowledge engineering environments should provide a toolset rather
than a single tool.

This style of supporting higher level generic computational activities with appropriate constructs is
well-known in computer science in general; high-level programming languages are attempts to provide
the programmer with constructs for a variety of common functions. It is items 2 and 3 above, viz.,
knowledge and inference, that make the above specification different from the standard high-level
language constructs in computer science and make it particularly appropriate for knowledge-based
problem solving.

2 Some Generic Tasks and Their Specifications
While the approach has relevance to Al in general, as a practical matter, our work has concentrated

on information-processing strategies useful for building systems for knowledge-rich problem solving, or
so-called expert systems. Such systems emphasize the role of large amounts of domain knowledge
compiled for specific problem solving tasks that characterize routine human expert behavior. Without
intending any kind of completeness, we list here some of the tasks that we have found to be very useful in
building practical knowledge-based systems. As we will see, a variety of diagnostic and routine design
and planning problems come under this category. The d, scription of the tasks in this section is
necessarily cryptic and somewhat oversimplified, and is provided mainly for a quick overview and
comparison. Hierarchical classification, hypothesis matching, and plan selection and refinement are
described in some detail in later sections of the paper, and abductive assembly described in somewhat
less detail. Please see the citations for details on the rest of the generic tasks.

Each description is organized by the function of the task, the tool in our GT toolset for the task, the
knowledge and inference types that the tool supports, and other relevant annotations. In each case, the
GT tool commits itself to one way of achieving the functionality. Also, in each case the control behavior is
the default behavior, and should be thought of as describing a family of control types.

2.a Hierarchical Classification
Task specification

Input: given a situation description of in terms of features. Output: classify it, as specifically as
possible, in a classification hierarchy. (Multiple classifications, where different classes characterize
different parts of the situation description, are also possible.)

GT tool

CSRL [6] (Conceptual Structures Representation Language). 3
How CSRL works:

Forms of Knowledge 3
Classification hierarchy, access to knowledge that produce information about how well the data

match the classificatory conceps (see Hypothesis Matching, below) 3
Inference and Control

I
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(Simplified) Establish nodes, if successful refine the concept by considering children, if
_ unsuccessful, reject node, and prune subtree.u Example use

Medical diagnosis can often be viewed as partly a classification problem [22. Problems may be
classified into types which may then suggest methods of solutions. The diagnostic portion of MYCIN
[351 (see Clancey [18]) and PROSPECTOR [19] can be viewed as classification problem solving.

2.b Hypothesis Matching
Task specification

Input: given a concept (a hypothesis) and set of data (features) that describe the problem state,
Output: decide how well the concept matches the situation. The task is a form of recognition [261.

GT Tool

i HYPER (HYPothesis matchER) [24]

How HYPER works:

Forms of Knowledge

An hierarchy of evidence abstractions, lowest level at the level of data and the highest level at the
level of the concept. Each node abstracts from its children into a higher level feature. In the particular
version considered in our work, the abstractions are qualitative degrees of confidence. (See detailed
description of HYPER, Section 3.c.3.)

Inference and Control

At each level a degree of confidence in the presence of the feature is computed from the features
that constitute evidence for it, and this is performed recursively until a degree of confidence for the
concept is computed. The basic theory is that recognition of a complex concept is performed by
hierarchically computing intermediate abstractions from raw data.

Example use

Samuel's signature tables perform this kind of abstraction. Many forms of recognition can be
performed by means of this strategy. For example, the concept may be a disease and the data may be
patient data relevant to the disease, and we wish to know what the likelihood of the disease is. Bylander

et al [8] discuss a class of strategies called structured matching (of which the HYPER strategy is a
particular example) and show how ubiquitious it is in knowledge-based reasoning.

2.c Knowledge-Directed Information Passing
Task specification

Input: Given attributes of some data entities, Output: determine the attributes of ,ther data of
interest, but not directly known, but can be inferred from the available data.

GT tool

IDABLE (Intelligent DAta Base LanguagE).

How IDABLE works:
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Forms of Knowledge

Data concepts organized as a frame hierarchy of types and subtypes of data objects in the domain.
Data attributes are slots with default values, default methods of computation of values, or explicit
procedural attachments which specify how to compute data attribute from related data.

Inference and Control

Data queries result in the default value being chosen if no information is available, or the
knowledge-intensive procedures to be invoked for inference. The inference procedures themselves can
be inherited from parent concepts as needed. 3

Example use

A diagnostic system may use a knowledge-directed database of this type for converting fromsensor or chart values into data of direct relevance to diagnosis. Clancey's data absraction component of !heuristic classification [181 can be achieved by this functionality.

2.d Synthesis by Plan Selection and Refinement 1
Task specification

Designing an object (device, program, plan) by hierarchical planning. Input: given specifications of
the object to be designed Output: generate design of an object (device, program, plan) meeting the
specifications.3

GT tool

DSPL [3, 4] (Design Specialists and Plans Language). 3
How DSPL works:

Forms of Knowledge 3
Hierachical structure of the object to be designed known in advance (making it routine design). For

each node in the hierarchy, precompiled design plans are known for making design choices. Failurehandling knowledge available, and some parts of the plans are constraint satisfaction knowledge, i.e.,
knowledge of constraints to be met by the design parameters.

Inference and Control 3
Top down control is typically used. Design plans are chosen, choices made at that level of

abstraction, and design refined by calling on plans for the children (i.e., components). Plan failures are I
passed up until failure handling knowledge is available to fix the design or choose alternate plan.

Exarple systems 3
The task performed by the expert system MOLGEN [20] and RI (29] can be viewed in this way. A

variant of this task has also been called skeletal planning in the literature.

2.e Abductive Hypothesis Assembly
Task specification

Input: Given a situation description and a set of hypotheses each explaining some aspects of the
situation and each with some plausibility value Output: Construct a composite hypothesis that is the best
explanation of the situation, i.e., explains all the data parsimoniously and as well as possible.

I
i
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GT tool

PEIRCE (named after C. B. Peirce, who first described the form of inference known as abduction)
[341.

How PEIRCE works:

Forms of Knowledge

Causal or other relationships between hypotheses (such as incompatibility, special case of),
relative significance of data describing the situation.

Inference and Control

Assembly and crticism alternate. At each stage during assembly the problem solving is drven an
attempt to explain the most significant datum remaining unexplained. The best hypothesis that offers to
explain it is added to the composite hypothesis. During criticism, explanatorily superfluous parts are
removed. This loops until all the data are explained or no hypotheses are left.

Example use

This task is a subtask in diagnostic reasoning as well as in theory formation in science. Portions of
INTERNIST [30 and DENDRAL [5] systems perform this task.

2.f Some Implications of GT's
The following general points about GT's are worth noting at this point.

1. As mentioned, a number of well-known expert systems can be thought of as decomposable

into subtasks, each of which corresponds to one of the above tasks. R1 performs a

simplified type of plan selection and refinement. Mycin performs classification and data

abstraction (one of the capabilities of our knowledge-directed information passing) in the

diagnostic part, and plan selection (in the therapy part). Additional examples can be given.

Note, however, that in all these instances, we are only pointing out that these systems

perform these tasks, but not necessarily in the manner that we propose that the tasks be

performed. Our claim will be that once we understand the knowledge requirements and the

inference strageies for each of the tasks, we can use methods that are more natural for the

tasks.

2. We have mentioned diagnosis a number of times in the above description as a problem that

uses one or more of the above generic tasks, e.g., classification and hypothesis assembly.

Note that, correspondingly, we do not have a generic task called diagnosis in the above list.

The reason for this is that, while diagnosis is "generic" in the sense that the problem occurs

in a number of domains and there are similarities in the methods that are domain-

independent, it is still a "compound" task in the sense that a number of distinct types of
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knowledge and inferences are used in the process of doing diagnosis. Thus the above list 3
of tasks can be used as natural building blocks for putting together a diagnostic problem

solver. (We shall soon describe how this can be done.) This illustrates an additional U
constraint in our sense of generic task. The task needs to have a coherence and simplicity

to it in that it ought to be characterizable by a simple type of knowledge and a family of I
inference types. This is what makes them "building blocks."

3. Functional modularity is an important consequence of this point of view. As we have shown

in a number of papers [7, 9, 10, 12, 15] th;s functional modularity makes system building 3
and debugging easier, and the task-specific knowledge and control constructs help in

knowledge acquisition and explanation. 3
4. The above list is not meant to be a complete list of generic tasks useful in knowledge-based

problem solving. In fact, quite a large part of Al - from weak methods to qualitative 3
simulation to scripts and plans - can be thought of as attempts to identify interesting

problems, the kind of knowledge required for it and the kinds of inferences useful to perform I
them. Thus, in qualitative reasoning, the generic problem considered is one where given

the structure of a system, the task is to derive the system's behavior in a qualitative way. I
The research program then identifies the knowledge and inference for the task. In the

appropriate context, each of them can be thought of as possible generic tasks. Our goal in l
the development of the generic task theory and the tool set has been to produce a

methodology and a technology that helps in the analysis, design, construction and I
debugging of practical knowledge systems and thus we concentrated on the generic tasks

that we felt would be most useful at this stage in the development of the technology.

Research is underway in our Laboratory on other such generic tasks, which would cover 3
phenomena in deep models such as structure to behavior reasoning and functional

reasoning. 3
In the next sections I will describe how certain kinds of diagnostic and design problems can be built

in the GT framework

3 Diagnostic Reasoning

I
I
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3.a Information Processing In Diagnosis
Abstractly, diagnosis is the problem of finding a cause or set of causes that "best explain" a set of

observations of a system, some of them indicating behavioral abnormality. In most nontrivial cases, the
process is a form of abducffve reasoning, i.e., the diagnostic conclusion is not deductively provable, but is
the hypothesis that makes best sense taking all the information into account.

We can identify a class of systems that we call compiled knowledge systems for diagnosis. These
systems have knowledge that is needed for diagnosis precompiled. This knowledge, at a minimum,
would include:

* knowledge of possible causes in terms of which the diagnostic answer will need to be given.

* knowledge that helps map from observations to possible causes, i.e., evaluate how likely a

given cause or subset of causes might be given the set of observations.

Many of the well-known diagnostic expert systems, e.g., Mycin [35], Internist [30], MDX [39], set-
covering and Bayesian diagnostic systems have this knowledge compiled in the knowledge base. Where
these systems differ is in the form this knowledge takes, in the way the actual inference processes work,
and also in the control of reasoning. Such compiled knowledge systems concentrate their problem
solving behavior only on the specific diagnostic problem at hand, rather than in activities that produce the
needed knowledge. These systems ought to be contrasted with diagnostic systems which do not have
the needed diagnostic knowledge in a readily usable form (or the diagnostic knowledge is incomplete),
but must acquire them by other kinds of problem solving, e.g., by deriving it from structural models of the
device under diagnosis, or from analysis of past diagnostic cases involving the device. See [13] for a
discussion of the general issues surrounding the use of deep models and [38] for a discussion of how
such. model-based reasoning and compiled reasoning can be interlaced. The diagnostic architecture that
I will be discussing in the following pages is a compiled knowledge architecture.

Diagnosis can be computationally complex: even with compiled knowledge, all subsets of
hypotheses may in principle need to be evaluated and compared. This is mainly due to two reasons: one,
hypotheses may interact, i.e., two hypotheses together may account for more or less observations than
the union of the sets of observations that they explain individually; and, two different subsets may explain
the same sets of data and principles of parsimony will need to be brought in to choose the better
explanation. All diagnostic systems, be they formal, such as set-covering and Bayesian approaches, or
"heuristic", such as Mycin, either squarely face this problem and end up with computationally intractable
algorithms, or make more or less realistic assumptions about the domain that help them cut down the
exhaustive search through the space of hypotheses combinations. (For example, its domain is such that
Mycin can implicitly make assumptions of no interaction between diagnostic hypotheses.)

The GT architecture that we will propose shortly broadly decomposes the problem into a
classificatory one, which generates highly plausible diagnostic hypotheses, which are then used by an
abductive assembly component to produce the best composite hypothesis for the problem. The overall
decomposition above brings significant computational advantages, since the assembly process now only
needs to work with a much smaller number of initial hypotheses, with the option to seek out less plausible
hypotheses as needed for explanatory completeness. This, in conjunction with the computational
efficiencies that the proposed architectures for classification and abductive assembly individually possess,
makes the above architecture computationally attractive whenever knowledge is available in appropriate
forms: e.g., hierarchies for classification and explicit knowledge about causal and logical interactions
among diagnostic hypotheses for the abductive assembly component.

3.b A GT Architecture for Diagnosis
The architecture has four components: hierarchical classification, hypothesis matchers, abductive

assembly, and knowledge-directed data abstraction and inference. The hierarchical classifier navigates
the space of malufunctions organized as one or more hierarchies. The hierarchical organization permits a



8

quick determination of the plausible hypotheses with minimal search through the space of all possibile
hypotheses. The result of the classification process is a small set of highly plausible hypotheses.

The classifier itself needs a mechanism to evaluate the degree of plausibility of each of the
hypotheses. The knowledge necessary to evaluate the pla'isibility of a classificatory hypothesis can be
localized to each hypothesis in the context of the hierarchy. This can be oune by a hypothesis matching
component which evaluates any given hypothesis in the classification hierarchy by matching the data with
expectations for the concept and which outputs a qualitative degree of confidence in the hypothesis (and
the observations the hypothesis can explain). Thus the classifier, in conjunction with the hypothesis
matchers for each of the concepts, can output plausible diagnostic hypotheses with the data it can explain
attached to each of the hypotheses.

The output of the classifier goes to an abductdve hypothesis assembly component, which puts
together a subset of these hypotheses as a composite hypothesis that best explains the data. This
process must consider the interactions that occur among the causes that correspond to the hypotheses in
order to ensure internal coherence among combinations of hypotheses. The knowledge concerning
hypothesis interactions can be explicitly represented for each hypothesis, thus being consulted only if that
hypothesis is included in the composite hypothesis. This process must also assemble a diagnosis which
meets various criteria of parsimony, completeness and plausibility. In the more complex uses of this
architecture, the classification hierarchy may be asked to refine originally less plausible hypotheses if the
explanatory power of the best composite hypothesis so far assembled is insufficient to cover all the
observations that need explanation.

In many diagnostic problems the level of abstraction of the data which are available may be
different from that required for tha concept matcher, or additional inferences from available data may be
needed to generate data that the diagnostic concept matcher can recognize as relevant. A necessary
addition to this architecture is a database which uses domain knowledge to make the inferences and
abstractions. In the proposed architecture, the hypothesis matcher can communicate with a system for
data retrieval/abstractioninference, whose task is a form of knowledge-directed information passing
component which can convert data at to low a level of abstraction into diagnostically significant data.

The important point is that each of the modules above is generic:

* Each is a strategy independent of diagnosis and can be iised in a nuber of other high level

tasks. The abductive assembler, e.g., can just easily accept input from a plan recognizer so

that it assembles a best explanation of various sightings in a battle situation. The data

abstractor can be just easily used by a therapy planner, and so on.

* Each strategy, as we shall see, uses characteristic knowledge and inference, maing it

possible to focus the problem solving effort in a manner appropriate for the task.

The functionality of Clancey's heuristc classification, consisting of the subtasks of data abstraction,
heuristic matching, and refinement can be achieved by three modules in our architecture: the hypothesis-
matcher performs the heurstic matching task, the database component performs, among others, the data
abstraction task, and the classifier performs the refinement task. The architecture has tho additional
capability of handling multiple malfunctions because of the abductive assembly component.

In sum the task of diagnosis can often be handled by the bL'!ding blocks in the architecture
diagramed in Figure 1. Thus, if the appropriate knowledge is available, a compiled knowledge diagnostic
system can be built using the CSRL, HYPER, PEIRCE and IDABLE tools.

Gomez and Chandrasekaran [221 pointed out the importance of classification for diagnosis and
Mittal 1311 described the architecture of MDX, which included all the components except abductive
assembly. Josephson et al [27] added abductive assembly as part of a general architecture for abduction.
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Figure 1: A Ge neric Task Architectre for Diagnosis With Compiled Knowledge

Describing how all the components of the diagnostic arerhitecture can be built and integrated
requires much more space than we have available. We describe in Some detail the use of CSRL (the
version to be described has HYPER embedded in it) for classification and hypothesis matching, and
describe the assembly process in less detail. References [25] and [34] give further information on the

3.c Classificatory Problem Solving and CSRL 3

I 3Much of the material in this section is from S. Chandraselkaran and William F. Punch IIl, "Hierarchical
clasification: its usefulness for diagnosis and sensor validation," invited talk at the Second AIAA/NASA/USAF
Symposium on Automation, Robotics and Advanced Computing for the National Space Program. March 9-11, 1967.
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3.c.1 Classificatory Hierarchies ,
Hierarchical classification (HC) is a particular method of performing the classification task. HC

requires the availability of a classification hierarchy that organizes the classificatory hypotheses. Medical
diagnosis, e.g., uses disease hierarchies, and in many engineering domains, malfunction hierarchies are
quite common.

In Section 2, we gave a characterization of hierarchical classification. Figure 2 il;ustrates a
fragment of a tree from a hierarchical classification system for the diagnosis of Fuel System malfunctions I
in a car engine. Fuel System Problem

Bad Fuel Problems Fuel Mixture Problems

I

Low Octane Water in Fuel Dirt in Fuel

Figure 2: Fragment of Fuel System classification tree. In this case, the hierarchy is largely of classas

and subclasses of "causes." In other cases, the subclasses may be subfunctions, or physical parts.

Note that as the hierarchy is traversed from the top down, the categories (or in this particular case, I
hypotheses about the failure of the fu'el system) become more specific. Thus the children of the
hypothesis Bad Fuel Problems can be broken into more specific hypotheses of Low Octane, Water in
Fuel and Dirt in Fuel.

Each node in the hierarchy is responsible for calculating the "degree of fit" or confidence value of
the hypotheses that the node represents. For example, the Bad Fuel Problems node is responsible for
determining if there is a bad fuel problem and the degree of confidence it has in that decision. Each node I
can be thought of as a "specialist" in determining if the hypothesis it represents is present. To create
each specialist, knowledge must be provided to make this confidence value decision. The general idea is
that each specialist specifies a list of features that are important in determining whether the hypothesis itrepresents is present and a list of patterns that map combinations of features to confidence values. In the

Fuel System Problems specialist, such features might include gas mileage problems, poor performance,
difficulty in starting the engine etc. One pattern might be that if all the features are present then the Fuel
System Problems hypothesis is likely.

3.c.2 The Control Strategy of Hierarchical Classification
Given that the knowledge of the system is organized as a set of specialists in a hierarchy, how can

the hierarchy be efficiently traversed? This process is primarily accomplished through a type of
hypothesis refinement called establish-refine. Simply put, a specialist that establishes its hypothesis (has
a high confidence value) refines itself by activating its more detailed sub-specialists. A hypothesis that is
ruled out or rejected its hypothesis (has a lov, confidence value) is not refined, thus effectively pruning the
subtree below it. The reason for this becomes obvious when one thinks again of how the specialists are
organized. The subhypotheses of Fuel System Problems, for example, are simply more detailed
hypotheses. If there is no evidence for Fuel System Problems (it is ruled out), then there is no point in
examining more detailed hypothesis about failures of the fuel system.
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The process of establish-refine continues until no more refinements can take place. This can occur
either by reaching the tip level hypotheses of the hierarchy or by ruling Out mid-hierarchy hypotheses.

3.c.3 CSRL, a Language Tool for Hierarchical Classification Systems
CSRI. (Conceptual Structure Representation Language) 161 is a language for writing hierarchical

classification expert systems. The current version of CSRL ;s really a mixture of the shells of both
hierarchical classification and hypothesis matching. A new version of the hypothesis matcher shell is
available as HYPER. In this section, we will describe the older form of CSRL

CSRL allows a knowledge engineer to do three things:

1. Create a hierarchy of malfunction hypotheses in a particular domain.

2. Encode the pattern matching knowledge for each hypothesis into a specialist.

3. Control the process of establish-refine problem solving.

Encoding the Hierarchy of Malfunctions

In CSRL, a hierarchical classification system is implemented by individually defining a specialist for
each malfunction hypothesis. The super- and sub-specialists of a specialist are declared within the
definition. Figure 3 is a skeleton of a specialist definition for the Bad Fuel node from Figure 2. The
declare section specifies its relationships to other specialists. The other sections of the specialist will be
examined later.

(SPECIALIST BadFuel
(DECLARE (SUPERSPECIALIST FuelSystem)

(SUBSPECIALIST LowOctane WaterlnFuel
DirtlnFuel))

(KGS ...)
(MESSAGES ...))

Figure 3: Skeleton specialist for BadFuel. The code specifies the location of BadFuel in the hierarchy,

points to the knowledge groups that contain information about how to establish or reject the concept, and
contains messages that specity control behavior.

Designing a classification hierarchy is an important part of building a tSRL expert system, but the
exact structure of the final system is a pragmatic decision rather than a search for the perfect hierarchy.
The main criterion for evaluating a classification hierarchy is whether enough evidence is normally
available to make confident decisions. To decompose a specialist into its subspecialists, the simplest
method is to ask the domain expert what subhypotheses should be considered next. The subhypotheses
should be subtypes of the specialist's hypothesis, and will usually differ from onr another based on a
single attribute (e.g., location, cause).

For the diagnosis problem the criteria for forming classification hierarchies are discussed, with
examples from the medical domain, by 171, and in the engineering domain by [32. The hierarchy may mix
function-subfunction and part-subpart views, depending upon the way diagnostic reasoning actually works
in the domain. Multiple hierarchies of the same domain, each from a different perspective, are also useful
for some domains: the MDX-2 system of Sticklen [391 uses such multiple hierarchies.
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Encoding Pattern-Match Knowledge I
The knowledge groups in the kgs section contain knowledge that matches the features of a

specialist against the case data. Each knowledge group is used to determine a confidence value for I
some subset of features used by the specialist. As such, a knowledge group becomes an abstraction of
evidence, representing an evidential abstraction of a particular set of features important to establishing
the specialist. A knowledge group is implemented as a cluster of production rules that maps the values ofa list of expressions (boolean and arithmetic operations on data, values of other knowledge groups) tosome conclusion on a discrete, symbolic scale.

As an example, Figure 4 is the relevant knowledge group of the BadFuel specialist mentioned
above. It determines whether the symptoms of the automobile are consistent with baa fuel problems.
The expressions in the MATCH part queries the user (who acts as the database for this case) concerning
whether the car is slow to respond, starts hard, has knocking or pinging sounds, or has the problem when
accelerating. ASKYNU? is a LISP function which asks the user for a Y, N,'or U (unknown) answer from
the user, and translates the answer into T, F, or U, the values of CSRL's three-valued logic (Note that any
LISP function may be used here). The results of the MATCH expressions are then compared to a
condition list in the WITH part of the knowledge group. For example, the first pattern "T ? ?" in the figure I
tests whether the first match expression (ASKYNU? "Is the car slow to respond*) is true (the ? means
doesn't matter). If so, then -3 becomes the value of the knowledge group4 . Otherwise, subsequent
patterns "? T .' or "? ? T" are evaluated. The value of the knowledge group will be 1 if no rule matches.
This knowledge group encodes the following matching knowledge:

If the car is slow to respond or if the car starts hard, then BadFuel is not relevant in this case. Otherwise,
if there are knocking or pinging sounds and if the problem occurs while accelerating, then BadFuel is highly
relevant. In all other cases, BadFuel is only mildly relevant.

(RELEVANT TABLE 1
(MATCH

(ASKYNU? "Is the car slow to respond")
(ASKYNU? "Does the car start hard')
(AND (ASKYNU? "Do you hear knocking orI

pinging sounds")
(ASKYNU? "Does the problem occur while

accelerating)) I
WITH (IF T ? ?

THEN -3
ELSEIF ? T ?
THEN -3I
ELSEIF ? ? T
THEN 3
ELSE 1)))

Figure 4: "Relevant" knowledge group of BadFuel. The ASK arguments are questions to the user, but

they can also be queries to the database. The argument of WITH specify truth tables in the I
knowledge group.

I
Figure 5 is the summary knowledge group of BadFuel. Its MATCH expressions are the values of

the relevant and gas knowledge group (the latter queries the user about the temporal relationship
between the onset of the problem and when gas was last bought). In this case, if the value of the I

41n this case, the values assigned are on a discrete scale from -3 to 3. -3 representing ruled-out and 3 representing confirmed.

I
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relevant knowledge group is 3 and the value of the gas knowledge group is greater then or equal to 0,
then the value of the summary knowledge group (and consequently the confidence value of BadFuel) is
3, indicating that a bad fuel problem is very likely.

(SUMMARY TABLE
(MATCH RELEVANT gas
WITH (IF 3 (GE 0)

THEN 3
ELSEIF 1 (GE 0)
THEN 2
ELSEIF ? (LT 0)
THEN -3)))

Figure 5: "Summary" knowledge group of BadFuel.

This method of evidence combination allows the calculation of the confidence value to be
hierarchically organized. That is, the results of any number of knowledge groups can be further abstracted
by a knowledge group that can combine their values .into a single confidence value.

As mentioned earlier the above pattern matching knowledge and problem solving structure is a
generic task that we have identified as hypothesis matching, and a separate shell called HYPER is
available to capture just this functionality.

The mapping from data to confidence in a concept is a form of probabilistic mapping. The symbolic
degrees of confidence are qualitative measures of subjective likelihood. However, the way data combine
to produce a confidence for a higher level feature is not modeled by any normative calculus, be it
Bayesian or one based on fuzzy sets, but directly obtained from the domain expertise localized to that
particular context. There are important issues of how this view of handling uncertainty differs from the
more traditional formal methods for which we refer the reader to [11. 6].

Encoding of Establish-Refine Strategy

The MESSAGES section of a specialist contains a list of message procedures which specify how
the specialist will respond to different messages from its superspecialist. ESTABLISH and REFINE are
the predefined messages in CSRL though others may be created by the user. The establish message
procedure of a specialist determines the confidence value (i.e., the degree of fit) of the specialist's
hypothesis. Figure 6 illustrates the establish message procedure of the BadFuel specialist, relevant anosummary are names of knowledge groups of BadFuel (see previous section). SELF is a keyword which
refers to the name of the specialist. This procedure first tests the value of the relevant knowledge group.
(if this knowledge group has not already been evaluated, it is automatically evaluated at this point.) If it is
greater than or equal to 0, then BadFuel's confidence value is set to the value of the summary knowledge
group, else it is set to the value of the relevant knowledge group. A value of +2 or +3 indicates that the
specialist is established. In this case, the procedure corresponds to the following strategy.

First perform a preliminary check to make sure that BadFuel is a relevant hypothesis to hold. If it is not
(the relevant knowledge group is less than 0), then set BadFuel's confidence value to the degree of
relevance. Otherwise, perform more complicated reasoning (the summary knowledge group combines the
values of other knowledge groups) to determine BadFuel's confidence value.

The refine message procedure determines what subspecialists should be invoked and the
messages they are sent. Figure 7 shows a refine procedure which is a simplified version of the one that
BadFuel uses. SUBSPECIALISTS is a keyword which refers to the subspecialists of the current
specialist. The procedure calls each subspecialist with an ESTABLISH message. If the subspecialist
establishes itself (+? tests if the confidence value is +2 or +3), then it is sent a REFINE message.
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(ESTABLISH (IF (GE relevant 0)

THEN (SETCONFIDENCE self summary)
else (SETCONFIDENCE self relevant))) I

Figure 6: Establish procedure of BadFuel. If it has been evaluated not to be relevant, that sets the
confidence value to be negative, If it is relevant then more comolex matching is invoked to set the
confidence value. I
(REFINE (FOR specialist IN subspecialists

DO (CALL specialist WITH ESTABLISH)
(IF (+? specialist)

THEN (CALL specialist
WITH REFINE)))) I

Figure 7: Example refine procedure. This specifies the control behavior for exploring the successors of
a classificatory hypothesis that has been established.

U.4 The Computational Advantages of Hierarchical Classification I
The major advantage of a hierarchical classification system is the organization of both the hierarchy

of malfunctions and the knowledge groups within a specialist This organization allows an efficient
examination of the knowledge of the system based on need.

Consider again the hierarchy of Figure 2. The problem solving begins by evaluation of the specialist
Fuel System Problems. If that specialist establishes, then the two sub-specialists Bad Fuel Problems and
Fuel Mixture Problems are invoked. If however, the Bad Fuel Specialist does not establish, then none of
its sub-specialists will be invoked. Thus, if a specialist rules out (i.e does not establish), then none of the
knowledge of the sub-specialists need be run.

The same is true of the knowledge groups in the specialist. Only that knowledge necessary to
confirm or deny the knowledge group is run. If a row of the knowledge group matches, then none of the
subsequent rows are evaluated. Again, this results in running only the knowledge necessary for the
problem at hand.

Compare this with other hierarchical approaches to diagnosis. The fault tree is a sequence of
causally related events that leads to an observable symptom in the system. Given an initial malfunction, I
all possible causal results of the event are traced out, terminating with the symptoms that would be
observed by a human diagnostician. When applied to an entire system, the result is a network of events
that represent all the causal relationships of the system's constituent parts. While useful in design tasks,
application of fault trees to diagnosis has a number of problems.

1. The combinatorial fan-out from an initial event can be very large. This makes the job of

creating and trversing the network difficult. Compare this with the abstraction of

hypotheses in hierarchical classification systems. Each node in the hierarchy represents a 3
malfunction hypothesis that is listed in more detail through its sub-specialists. If many

sub-specialists occur in the hierarchical decomposition of the domain, more levels of

I
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3 abstraction can be introduced to limit the fan-out. Such abstraction does not exist in fault

tree representations.

2. Fault trees make no attempt to limit the number of nodes of the network that must be

evaluated. Given a significant event, all possibilities are examined. However, hierarchical

classifiers make use of the abstraction of malfunction hypotheses to limit the- number of
I nodes that must be examined based on the data of the case.

The issues of control and communication in hierarchical classification can be more complex than
our description in this paper. Gomez and Chandrasekaran [22] describe the use of blackboards in
exchanging information between different portions of the hierarchy. Sticklen, et al 138] describe the morecomplex control issues that need to be faced in some situations, and Sticklen [39] describes the use ofmultiple hierarchies in classification.

3.d Hypothesis Assembly in Diagnosis
In typical diagnosis problems, the available data cannot always be explained by one malfunction

hypothesis, but may require several hypotheses which must be combined in order to account for the
observations. As the space of hypotheses grow in size, the problem of finding the best combination of
hypotheses which apply to a particular situation becomes exponentially more difficult. Hierarchical
classification can trim down the space of applicable hypotheses tremendously, yet it may still be
necessary to find a subset of the hierarchy's plausible candidates which gives the simplest and bestdiagnosis.

For example, suppose that the Auto-Mech hierarchy were extended to classify malfunctions for
other car subsystems, including the braking mechanism. When classifying a case which has data such
as "The car won't start when cold," "The engine runs roughly,' "The brakes are hard to push," and The
car doesn't stop quickly," several diagnostic hypotheses may be found to be applicable, such as 'water in
fuel' and 'loss of brake fluid', among others. In this case, the classification hierarchy has trimmed the set
of all fuel and brake system diagnostic hypotheses down to a handful of highly relevant ones. However,
the classification mechanism as such is incapable of determining whether this subset of relevant
hypotheses accounts for all of the data. Furthermore, some of these hypotheses may be inconsistent or
superfluous with respect to each other. Therefore, it is necessary to invoke a process of hypothesis
assembly to complete the diagnosis by assembling a parsimonious subset of these hypotheses which
gives the best explanation. In this case, the final subset of hypotheses could be 'water in fuel' and 'loss of
brake fluid', since both are highly plausible, between the two of them they account for all the data, and
neither is inconsistent or superfluous with regard to the other.

To carry this example further, it is possible that the hypothesis assembler may uncover relevant
relationships which are only implicitly represented in the classification hierarchy. For example, in some
models of cars the vacuum generated by airflow through the engine is diverted to assist the braking
mechanism. Thus a punctured vacuum hose reduces the airflow through the carburetor, causing the
engine to run roughly, and disabling the assistance to the brakes. When running the Auto-Mechhierarchy on the previous case, for an appropriate model of car, the following hypotheses may be found
to be relevant: 'engine vacuum hose punctured' and 'brake vacuum assist inoperational'. Both of these
hypotheses need to be present in the classification hierarchy, because the first refines the 'engine
problem' hypothesis, whereas the second refines the 'brake system problem' hypothesis. In this case,
however, it is clear that the second problem is causally related to the first. Therefore, when the
hypothesis assembler is putting together the best explanation for hypothesis assembler is putting together
the best explanation for the data, it will uncover that 'engine vacuum hose punctured' accounts for all the
data that 'brake bacuum assist inoperational' accounts for, and propose 'engine vacuum hose punctured'
as a one-hypothesis set which best explains the data.r
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Combining the process of hierarchical classification and hypothesis assembly in this way results in I

an efficient process for diagnosis. Classification without assembly cannot evaluate the final diagnosis in
the case of multiple failures. Assembly without classificaiton Is an intractable problem in the general
case. The issue of complesity in hypothesis assembly is particularly noticeable in the medical domain, I
where physiological and anatomical subsystems interact in highly complex ways, When both generic
tasks are combined, however, their interaction reduces the complexity of the diagnostic problem while
maintaining the ability to find the best explanation when there is one. I

Josephson, et al [27] is a good source of how the abductive assembly process works. Punch et al
[34] describe the tool PEIRCE, which is intended to build abductive assembly systems.

3.e Applications of the Abductive Architecture
A number of diagnostic systems have been built using the hierarchical classification approach

provided by the CSRL tool. This section enumerates some the these applications and their domains.

It should be noted that of the following systems, Auto-Mech is strictly a pedagor'-al system, the
Nuclear Power and Chemical Engineering systems are initial explorations for yet t( be developed I
systems and Red, WELDEX and ROMAD are being developed to be used in real world situations.

Auto-Mech [40]

Auto-Mech is an expert system which diagnoses fuel problems in automobile engines. The
purpose of the fuel system is to deliver a mixture of fuel and air to the air cylinders of the engine. It can
be divided into major sub~ystems (fuel delivery, air intake, carbuertor, vacuum manifold) which I
correspond to initial hypotheses about fuel system faults.

Auto-Mech consists of 34 CSRL specialists in a hierarchy which varies from four to six levels deep.
Before running. Auto-Mech collects some initial data from the user. This includes the major symptom ihat
the user notices (such as stalling) and the situation when this occurs (e.g., accelerating and cold engine
temperature). Any additional questions are asked while Auto-Mech's specialists are running. The
diagnosis continues until the user is satisfied that the diagnosis is complete. I

A major part of Auto-Mech's development was determining the assumptions that would be made
about the design of the automobile engine and the data that the program would use. Different automobile
engine designs have a significant effect on the hypotheses that are considered. A carbureted engine, for
example, will have a different set of problems than a fuel injected engine (the former can have a broken
carburetor). The data was assumed to come from commonly available resources. The variety of
computer analysis information that is available to mechanics today was not considered in order to simplify
building Auto-Mech.

Red [371 3
Red is an expert system whose domain is red blood cell antibody identification. An everyday

problem that a blood bank contends with is the selection of units of blood for transfusion during major
surgery.. The primary difficulty is that antibodies in the patient's blood may attack the transfused blood,
rendering the new blood useless as well as presenting additional danger to the patient. Thus identifying
the patient's antibodies and selecting blood which will not react with them is a critical task for nearly all
red blood transfusions.

The Red expert system is composed of three major subsystems, one of which is implemented in
CSRL The non-CSRL subsystems are a data base which maintains and answers questions about
reaction records (reactions of the patient's blood in selected blood samples under a variety of conditions), 3
and a overview system, which assembles a composite hypothesis of the antibodies that would best
explain the reaction record. (This assembly is Itself a generic task called "abductive assembly" and a tool
called PEIRCE can be used to build the assembly system.) CSRL is used to implement specialists 3
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corresponding to the common blood antibodies and to each antibody subtype (different ways that the
antibody can react).

The major function of the specialists is to rule out antibodies and their subtypes whenever possible,
thus simplifying the job of the overview subsystem, and to assign confidence values, informing overview
of which antibodies appear to be more plausible. The specialists query the data base for information
about the lab test results and other patient information, and also tell the data base to perform certain
operations on reaction records.

Complex Mechanical Systems

CSRL has been used in creating expert systems that do diagnosis of faults both in the domain of
Nuclear Power Plants and in the domain of Chemical Engineering.

The Nuclear Power Industry must be very careful in the maintenance of running power plants since
mistakes can prove costly not only in terms of power plant damage but also in terms of radiation leakage
and broad environmental damage. Nuclear Power Plants are therefore heavily monitored in many areas,
so heavily in fact that it is difficult (if not impossible) for the operator to maintain an understanding of just
what exactly is going on. The Nuclear Power Plant expert system [23] is designed to take in large
amounts of data and classify them into one of approximately 25 different failures. One advantage of the
CSRL approach is that the operator can be informed of a high level view of the problem if no specific
failure can be discovered.

The problems of the Chemical Engineering Plant are similar, but it does have a number of
differences. While safety is also of concern, there is also the problem of product quality in a Chemical
Engineering Plant. If a malfunction occurs that produces an unusable product, the operation must be
brought quickly back -into line or large amounts of material will be wasted. The Chemical Engineering
expert system [36] does diagnosis of a typical reactor producing a solid product as a result of the reaction
of liquid product and oxygen. It consists of approximately 30 specalists that represent hypotheses about
failures of the various physical parts of the plant. In addition to data that monitors the state of the reactor,
these specialists also use data about product quality to make the confidence value decision.

Other Real World Uses of CSRL

CSRL is being used to develop two commercial systems by the Knowledge Based Systems group
at the Battelle Columbus Institute. WELDEX and ROMAD are diagnostic systems for, respectively,
detecting welding defects and evaluating machinery. A brief description of WELDEX follows.

WELDEX identifies possible defects in a weld from radiographic data of the weld. Industry
standards and regulations require careful inspection of the entire weld and a very high level of quality
control. Thus for industries which rely on welding technology, such as the gas pipeline industry,
radiograph inspection is a tedious, time-consuming, and expensive part of their operations.

This problem can be decomposed into two tasks: visual processing of the radiograph to extract
relevant features of the weld, and mapping these visual features to the welding defects which give rise to
them. WELDEX is intended to perform the second task. The current prototype consists of 25 CSRL
specialists that are organized around different regions of the weld, taking advantage of the fact that each
class of defects tends th occur in a particular region. The knowledge groups in these specialists
concentrate on optical contrast, shape, size and location of the radiograph features. A customer version
of WELDEX is currently being developed. Future work is anticipated on developing a visual processing
system whose output would be processed by WELDEX, thus automating both parts of the radiograph
inspection problem.
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4 Routine Design and DSPL 5  I

4.a Subprocesses in Design 3
Design is in general complex and, from the viewpoint of Al, a relatively poorly understood activity.

For our purposes here, it is useful to think of design problem solving as having two sets of parts: those
that "generate," i.e., propose designs or parts of designs and those that "test," i.e., analyze, critique and
evaluate designs. Evaluating a design may involve problem solving behavior such as qualitative
simulation (e.g., to see if the projection from the wheel will rub against the body during rotation) or
quantitative analyses (e.g., finite element methods to evaluate stress in a design component to see if the
maximun stress is below the specifications), but these processes are not specific to design as a problem
solving activity. On the other hand, the processes that participate in the "generate" portion are specific to
design. In [16] we have identified some of these generic processes: lI

* design problem decomposition,

* design plan instantiation and expansion, 3
* retrieval and modification of similar designs and,

* global satisfaction of constraint equations. I
Among the above four processes, the first two are especially important for the discussion in this

paper. In design by decomposition pre-stored domain knowledge is available which proposes possible I
decompositions of the design problem into specific subproblems, each hopefully of lesser complexity. In
design by plan selection, instantiation and refinement, similarly a prestored design plan is available
setting out a set of steps, some of them involving making some design commitments and others possibly
involving calling other design plans, for solving the design problem at hand. The combination
decomposition and design plan instantiation and refinement can lead to quite complex problem solving.
In design from past cases, both the decomposition and design plan are implicitly available for a previo,
design case, but they typically call for further criticism and modification. I
4.b Classes of Design

The framework suggests that design by decomposition (i.e., breaking problems into subproblems),
by plan selection, and by plan synthesis (as a last resort) are the core processes in knowledge-based
design. This suggests an informal classification of design problems based on the difficulty of these
subtasks or processes. I
4.b.1 Class I Design

This is open-ended "creative" design. Goals are ill-specified, and there is no storehouse ofI
effective decompositions, not to speak of design plans for subproblems. Even when decomposition
knowledge is available, most of the effort is ir -earching for potentially useful problem decompositions.
For each potential subproblem, further work has to be done in evaluating if a design plan can be
constructed. This design problem is not routine. The average designer in industry will rarely, if ever, do
Class 1 design: such design leads to an invention or new products.

I.

Sparts of this section taken from a number of joint papers by the author with D. C. Brown. 3'
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4.b.2 Class 2 Design

Class 2 design is characterized by powerful problem decompositions already available, but design
plans for some of the component problems in need of de novo construction or substantial modification.
Design of a new automobile, e.g., does not involve new discoveries about decomposition: the structure of
the automobile has been fixed for quite a long time. On the other hand, several of the components in it
-constantly undergo major technological changes, and routine methods of design for some of them may no
longer be applicable.

Complexity of failure analysis will also take a problem away from routine design. Even if design
plans are available, if the problem solver has to engage in very complex problem solving procedures in
order to decide how to backtrack, the advantage of routine design is reduced. In short, whenever
substartal modifications of design plans for components are called for, or when synthesis in the design
plan space is especially complicated, we have a Class 2 problem.

3 4.b.3 Class 3 Design
This is relatively routine design: effective problem decompositions are known, compiled design

plans for the component problems are known, and actions to take on failure of design solutions are also
explicitly known. There is very little complex auxiliary problem solving needed. In spite of all this
simplicity, the design task itself is not trivial: complex backtracking can still take place. The design task is
still too complex for simple algorithmic solutions or table look up.

3 Class 3 problems are routine design problems, but still requiring knowledge-based problem solving.
The ensuing sections of this paper deal with an approach to building knowledge-based systems for
routine design problems of this type. The processes described here can work in conjunction with auxiliary
problem solvers of various types, but we do not discuss such additional problem solvers here. The
examples used all assume that the information to be provided by the auxiliary design processes, e.g.,
design criticism, verification, and subproblem constraint generation, are all available in a compiled

l manner.

4.b.4 A Class 3 Product
In a large number of industries, products are tailored to the installation site while retaining the same

structure and general properties. For example, an Air-cylinder intended for accurate and reliable
backward and forward movement of some component ,till need to be redesigned for every new customer
in order to take into account the particular sp ,co which it must fit or the intended operating
temperatures and pressures. This is a design task, but a relatively unrewarding one, as the designer
knows at each stage of the design what the options are and in which order to select them. Note that that
doesn't mean that the designer knows the complete sequence of steps in time (i.e., the trace) in advance,
as the designer has to be in the problem-solving situation before each decision can be made. There are
just too many combinations of requirements and design situations to allow an algorithm to be written to do
the job. This class of problems, while simple, is not by any means trivial: in fact, a typical class 3
problem involves more complex problem solving behavior at the design level than say is implicit in R1I [291.

DSPL is a language designed by D. C. Brown [3] which captures the problem decomposition
knowledge in the form of a design hierarchy of design specialists and the planning knowledge of each
specialist is in the form of design plans. The specialists also have a certain amount of compiled failurehandling knowledge, i.e., knowledge to help them recover when any of the chosen plans fail to
accomplish their mission.

3 The approach taken is to consider design knowledge to be in the form of active cooperating design
specialists. These specialists are organized in a hierarchy that reflects the human designer's conceptual
organization of the design activity. Specialists use their own local design knowledge, but can also use the
specialists directly below them in the hierarchy. This use is controlled by plans embedded in everyspecialist. Each specialist is responsible for some portion of the design, while it plans representalternative methods for designing that portion. Communication between specialists is in the form of

messages that flow up and down the hierarchy between the specialists and between their local agents

a
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(i.e., local design knowledge)6 . Messages flowing up may indicate failure or success. 1

The domain chosen was that of designing an Air Cylinder that was used by a local company in
many pieces of equipment but which needed to be designed again each time due to changing
requirements, such as the air pressure and the length of the stroke. A system called AIR-CYL has been
written that does the design given a set of requirements.

The rest of this section will describe DSPL using the example of AIR-CYL [4]. 1
4.c DSL: The Design Specialists and Plans Language 3

i
U
I

I

Figure 8: An air-cylinder

The air cylinder (AC) has about 15 parts, almost all of which are manufactured by the company
according to their own designs, as their requirements are such that the components cannot be
purchased. The AC is redesigned and changed slightly for applications with markedly different
requirements. This characteristic makes it routine design in type. In operation, compressed air forces a
piston back into a tube against a spring. Movement is limited by a bumper. The spring returns the piston,
and the attached "load," to its original position when the air pressure drops.

The corresponding design specialist hierarchy is given in Figure 9. The expert system for design of
aircylinders is organized as a hierarchy of such specialists.

DSPL provides a way of writing declarations of Specialists, Plans, Tasks, Steps, Constraints,
Failure Handlers, Redesigners, Sponsors and Jelectors, allowing the user to specify the knowledge
contained in them. In the following section we will address each of these declarations in turn.

eWe use the term "agert" to denote any chunk of knowledge that perorms some action with welldeined functionality to it. The
term "specialist" refers to those agents which correspond to th, nodes in the pat-subpart hierarchy of the obec under design.
Each specialist consists of further agents which take care of the subtasks of the specialists. In DSPL, these agents come in a
number of ditfemnt types.

I.
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I
3 Air Cylinder

Spring Head Rest

Cap Piston and Rod

Piston Rod£
3 Figure 9: Specialist hierarchy for designing air cylinder. Design hierarchies may follow a

function-subfunction or a part-subpart or a combination thereof as principles for organizing the hierarchy.

To build a Design Expert System (DES), the user declares in DSPL all the agents (i.e., active
design knowledge) required, and then allows the underlying system to link them together after some
checking. Once formed the DES can be invoked by requesting a design from the top-most specialist.
The design then proceeds according to the specialist's plans. After a successful termination the design
data-base contains the completed design. If failure occurs reasons are given. The DSPL system
provides the underlying problem-solving control.

4.c.5 Design Agents
Specialists

A Specialist is a design agent that will attempt to design a section of the component. The
specialists chosen, their responsibilities, and their hierarchical organization will reflect the mechanical
designer's underlying conceptual structure of the problem domain. Exactly what each specialist's
responsibilities are depends on where in the hierarchy it is placed. Higher specialists have more general
responsibilities. The top-most specialist is responsible for the whole design. A specialist lower down in
the hierarchy will be making detailed decisions. Each specialist has the ability to make design decisions
about the part, parts or function in which it specializes. Those decisions are made in the context of
previous design decisions made by other specialists. A specialist can do its piece of design by itself, or
can utilize the services of other specialists below it in the hierarchy. We refer to this cooperative design1 activity of the specialists as Design Refinement.

Every specialist also has some local design knowledge expressed in the form of constraints. These
will be used to decide on the suitability of incoming requirements and data, and on the ultimate success of
the specialist itself (i.e., the constraints capture those major things that must be true of the specialist's
design before it can be considered to be successfully completed). Other constraints, embedded in the
specialists plans, are used to check the correctness of intermediate design decisions. Still more
constraints are present in the design data-base as general consistency checks. A typical specialist is
shown in Figure 10.

The Selectors will be used to select from amongst the specialists plans. If no selector is specified a

I
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(SPECIALIST 3

(NAME Head)
(USED-BY AirCylinder)
(USES None)
(DESIGN-PLANS HeadDP1)
(DESIGN-PLAN-SELECTOR Headdpselector)

(ROUGH-DESIGN-PLANS HeadRDP1)
(INITIAL-CONSTRAINTS None)
(FINAL-CONSTRAINTS None)

Figure 10: Specialist "Head". The code specifies the location of the design specialist in the hierarchy,

names the design plans that are used by it and the constraints that its parameters may need to satisfy.

default selector will be used which selects plans in declaration order. Note that irn this declaration, as with I
others, the order of the individual parts of the declaration may vary according to the users wishes.

Plans

Each specialist has a collection of plans that may be selected depending on the situation, and it will

follow the plan in order to achieve that part of the design for which it is responsible. A Plan consists of a I
sequence of calls to Specialists or Tasks (see below), possibly with interspersed constraints. It

represents one method for designing the section of the component represented by the specialist. The

specialists below will refine the design independently, tasks produce further values themselves,

constraints will check on the integrity of the decisions made, while the whole plan gives the specific

sequence in which the agents may be invoked. Typically as one goes down in the hierarchy, the plans

tend to become fewer in number and more straightforward. An example of this is shown Figure 11. I
(PLAN

(NAME HEADDP1)
(TYPE Design)
(USED-BY Head)
(SPONSOR HeadDP1Sponsor)
(BODY HeadTubeSeat)

MountingHoles
Bearings
SeaAndWiper I
AirCavity
Airlnlet

(CHECK-CONSTRAINT Air)
TieRodHoles(REPORT-ON Head)

Figure 11: Plan "HeadOP1. The design plan specifies the specialist that uses it, what critera should be 3
met for it to be chosen, and the plan steps.

I
The type of a PLAN can be "Designo or "RoughDesign" depending on which phase of the design

the knowledge applies to. The SPONSOR's job is to give an opinion to a selector about how suitable this 3
I.
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plan is given the current state of the design. The BODY contains the details of the plan, and consists of
an ordered list of plan items. In this example the plan consists entirely of tasks, with the exception of a
constraint test and the last item which is a function provided by DSPL to print out the attributes and3values of some part of the design.

Steps, Tasks, and Constraints
We consider a Step to be a design agent that can make one design decision given the current state

of the design and taking into account any constraints. For example, one step would decide on the
material for some subcomponent, while another would decide on its thickness.

3
(STEP

(NAME AirCavitylD)
(USED-BY AirCavity)
(ATTRIBUTE-NAME HeadAirCavitylD)
(REDESIGNER AirCavitylDRedesigner)
(FAILURE-SUGGESTIONS

(SUGGEST (DECREASE RodDiameter))
(SUGGEST (DECREASE HeadBearingThickness))
(SUGGEST (CHANGE HeadMaterial

TO DECREASE MinThickness))

)3 (COMMENT "Find air cavity internal diam")

(BODY
(KNOWN
BearingThickness

(KB-FETCH 'Head 'HeadBearingThickness)
RodDiameter

(KB-FETCH 'Rod 'RodDiameter)
HeadMaterial

(KB-FETCH 'Head 'HeadMaterial)

MiniThickness
(KB-FETCH HeadMaterial 'MinThickness)

(Continued in next figure)3Figure 12: Step "AirCavitylD'.

A typical STEP in AIR-CYL is given in Figures 12 and 13. The STEP is broken down into two
figures for convenience in display, and should be treated as one figure. A brief explanation of the role of
the knowledge in the STEP is as follows. The sample STEP is USED-BY the AirCavity task. The
ATTRIBUTE-NAME is the attribute for which this step is to design a value; that is, the Internal Diameter of
the Air Cavity in the Head of the Air Cylinder. If a failure occurs the REDESIGNER will attempt to recover
from it by altering the value just selected for this step's attribute. The declaration REDESIGN NOT-
POSSIBLE is also allowed. If the step itself fails the FAILURE-SUGGESTIONS get passed up to the
controlling task in a failure message. The suggestions refer to attributes that might be the cause of the
failure. Each item in the suggestion list is evaluated at failure time. This allows conditional suggestions
such as (IF (. x y) THEN (SUGGEST ...)). However, if the suggestion includes an expression, as in
(DECREASE xyz BY (+ pqr o.56)), then the SUGGEST function will arrange for the value to be computed.
The actions DECREASE, INCREASE or CHANGE refer to attributes, such as RodDiameter. In the
current system all attribute names must be unique.

The BODY of the step is divided in KNOWN and DECISION sections. The keywords KNOWNS3 and DECISIONS will work just as well, and, in general, singular or plural keywords may be used as

I



24

(Continued from previous figure)
(DECISIONS
MaxRodRadius (VALUE+ (HALF RodDiameter))
MaxBearingThickness

(VALUE+ Bead ngThickness)
AirCavityRadius

(+ MinThickness
(+ MaxRodRadius

MaxBearingThickness))
AirCavitylD (DOUBLE AirCavityRadius)
REPLY (TEST-CONSTRAINT ACID)
REPLY (KB-STORE

'Head 'HeadAirCavitylD AirCavitylD) 3)

Figure 13: Step "AirCavitylD" continued. U

required. The KNOWN section obtains the values from the design data-base by doing KB-FETCH. The
KB-FETCH uses the component and attribute names. The single quote (i.e., ') is used to indicate that the U
name given is to be used directly without evaluation, as opposed to the use of a variable (e.g.,
HeadMaterial) that should be evaluated prior to use (e.g., HeadMaterial) that should be evaluated prior to
use (e.g., giving zhe value 'Aluminum"). I

The DECISIONS sections contains the design knowledge, It consists of variable-action pairs,
where the action is evaluated and its value assigned to the variable. That variable may then be used in
subsequent actions in the step. The variables set in the KNOWNS section may also be used. Arithmetic
expressions use prefix operators. The function VALUE+ returns the value plus the positive tolerance of
the value, and consequently provides the largest magnitude for that value. There are many other
functions available.

There are two distinguished variable names. One is REPLY, the other COMMENT. A comment
will act as a dummy assignment and will expect a string as the action. This is just a way of inserting a
comment into the body of the step. A REPLY variable is used when there is no value produced by the
action but a message showing success or failure is produced instead. The TEST-CONSTRAINT and the
KB-STORE are two examples. The value calculated by the step is put into the design data-base with a
KB-STORE. It can produce a failure message if a constraint in the design data-base fails. Any failure will I
stop the execution of the body and will cause the DECISION section to fail.

A task is a design agent which is expressed as a sequence of steps, possibly with interspersed
constraints. It is responsible for handling the design of one logically, structurally, or functionally coherent
section of the component; for example a seat for a seal, or a hole for a bolt

A Constraint is an agent that will test for a particular relationship between two or more attributes at I
some particular stage of the design. Constraints can occur at almost any place in the hierarchy. For
example, a constraint might check that a hole for a bolt is not too small to be machinable given the
material being used 3
4.c.6 Other Features

The main purpose of this exposition is not to give a complete description of DSPL, but to give a feel
for the task-specific nature of the tool. A few other essential features of the language will now be briefly
described.

Failure Handing and Redesign capability is an important requirement for anything other than 3
I.
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relatively simple design problems. DSPL does not have failure analysis capabilities, but it can accept

explicit knowledge about how to handle different kinds of failures during design. All design agents detect
their own failure, are able to determine what went wrong (at least superficially), attempt to see if they can
fix it locally, do so if they can, and report failure only if all attempts fail. Agents which have some control
over other agents can use those agents in their attempt to correct the detected problem.

Each kind of agent can have different kinds of reasons for failing. For example, a step finds that a
decision violates some constraint, a task discovers that a step's failure can't be mended locally, a plan
can fail if it is discovered that it's not applicable to the situation to which it is being applied,, while a
specialist can fail if all of Its plans fail.

For every kind of failure a message giving details is generated and passed back to the calling
agent. The message includes, wherever possible, suggestions about what might be done to alleviate the
problem. As there are usually many kinds of problems that can occur, an agent will first look at the
message to decide what went on below. This is done by the Failure Handler associated with the agent.
Much of the failure analysis is provided by the system, but for some cases, for example for constraint
failures, the user (that is the person using the plan language to write a design system) has to supply some
details. For some conditions immediate failure can be specified, for others an attempt to redesign might
be made.

Knowledge about how to recover from failure can be coded as a redesigner. There appears to be a
difference between the 'most reasonable choice' knowledge encoded in the step and the 'most
reasonable adjustment' knowledge encoded in the redesigner. The language provides a number of
constructs for representing failure handling knowledge of the above types.

Sponsors and selectors: A sponsor is associated with a plan and it is responsible for estimating the
suitability of a plan for a particular design situation. A selector takes the output of the sponsor and will
decide whether or not to use the plan if it has been recommended as suitable. The sponsor is expected
to provide a suitability value for the plan, and it it cannot, a 'use of plan language" failure will occur.

The selector takes as input the names of the plans being considered and their suitabilities for use in
the design situation as decided by their sponsors. It will pick a plan for the specialist to execute.

4.c.7 Use and Extensions of DSPL
This section has discussed the idea of languages in which to express problem-solving knowledge,

and has presented the language DSPL for a class of design problem-solving. DSPL embodies an
underlying theory of routine design problem-solving. Examples of Specialist, Plan, Task, Step,
Constraint, Redesigner, Failure Handler, Sponsor, and Selector knowledge were given. Most of these
examples were taken from AIR-CYL, an expert system to design an Air Cylinder.

DSPL has been used for the construction o MFA a system for routine logistics planning [111, and
in the construction of a design system in the domaJ , tiemical engineering [32].

More work needs to be done to test the applicability of this language to other design problems and
other domains. Extensions to the theory must be made in order to handle design activity which is not of
the type where both problem-solving and knowledge are known in advance. We feel that the
identification of some of the types of design knowledge and their use is a substantial contribution towards
understanding routine design activity.

5 The Generic Task Toolset
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S.a Important Properties of the Toolset I
So far, we have outlined the generic task theory and also described two such generic task tools:

CSRL and DSPL Tools corresponding to other generic tasks are also in existence in varying degrees of
completeness. These tools are currently available for the Interlisp/Loops environment in the Xerox 1100
series of Lisp machines. CSRL and DSPL are also available in versions that are compatible with the KEE
development system of Intellicorp. CSRL is also available in Commonlisp'. Currently, a project is under
way at our Laboratory for the entire toolset to be made available in Commonlisp.

The integrated generic task toolset is extensible in the sense that more generic tools can be added
as they are invented and additional problem solvers can be invoked as needed. The tools are intended to
ensure the following advantages of the generic tasks, as described in 181.

" Multiformity. The more traditional architectures for the construction of knowledge based

systems emphasize the advantages of uniforrnity of representation and inference. However, 1

in spite of the advantage of simplicity, we argued earlier that uniforrity results in a level of

abstraction problem. A uniform representation cannot capture important distinctions between

different kinds of problems. A uniform inference engine does not provide different control I
structures for different kinds of problems.

The generic task approach provides multiforr'uty. Each generic task provides a different way 3
to organize and use knowledge. The knowledge engineer can choose which generic task is

the best for performing a particular function, or can use different generic tasks for performing 3
the same function. Different problems can use different generic tasks and different

combinations of generic tasks. 3
" Modularity. A knowledge-based system can be designed by making a functional

decomposition of its intended problem solving into several cooperating generic tasks, as I
illustrated in our discussion on diagnosis. Each generic task provides a way to decompose a

particular function into its conceptual parts, e.g., the categories for hierarchical classification,

and allows domain knowledge of other forms to be inserted into a generic task, e.g.,

evidence combination knowledge in hierarchical classification [391. Each generic task

localizes the knowledge that is used to satisfy local goals.

" Knowledge Acquisiton. Each generic task is associated with its own knowledge acquisition

strategy for building an efficient problem solver [7]. For example in hierarchical classification,

the knowledge engineer needs to find out what specific categories should be contained in the I
7CSRL is avalble as a supported product from Batlge Memorial Laboratories, Micial Intaitence Group, in Columbus, Ohio, 3

mkhdig versions in Commonlap.

I.
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classification hierarchy and what general categories provide the most leverage for the

establish-refine strategy.

. Explanation. This approach directly helps in providing explanations of problem solving in

expert systems in two important ways: how the data match local goals and how the control

strategy operates [15]. Also, the control strategy of each generic task is specific enough for

generating explanations of why the problem solver chose to evaluate or not to evaluate a

piece of knowledge. This is because of the higher level of abstraction in which control is

specified for generic tasks.

Exploiting Interaction between Knowledge and Inference. Rather than trying to separate

knowledge from its use, each generic task specifically integrates a particular way of

representing knowledge with a particular way of using knowledge. This allows the attention

of the knowledge engineer to be focused on representing and organizing knowledge for

performing problem solving.

* Tractability. Under reasonable assumptions, each generic task generally provides tractable

problem solving [1, 21]. (One major exception is abductive assembly, which can become

intractable under certain conditions, making it hard then for humans and machines to perform

the task.) The main reasons why they are tractable are that a problem can be decomposed

into small, efficient units, and knowledge can be organized to take care of combinatorial

interactions in advance.

It should be noted that these advantages are attained at the cost of generality. Each generic task
is purposely constrained to perform a limited type of problem solving and requires the availability of
appropriate domain knowledge.

5.b Integrating and Combining GTs In an Application
It is hard at this overview level to give enough details of how the tools are to be combined to put

together complex applications. There are both significant theoretical issues of integration as well as
practical. issues of technology and implementation in this regard. The diagnosis example is a good
example to discuss the practical issue of how the tools in the toolset can be-combined for an application.

We need to make the following distinctions that will be helpful here. Each tool such as CSRL can
be regarded a a "shell' of a particular p.s. type. When the tool is invoked and knowledge and inference
encoded using the knowledge primitives and message types, we have a problem solver, and different
problem solvers built with the same shell can (and will typically) exist in an application. Each of the
problem solvers is a specialist in two different senses: it specializes in a particular body of knowledge
and in a type of problem solving, e.g., the automech (domain/concept) hierarchical classifier (type of
problem solving) built out of CSRL, or the BadFuel (domain/concept) hypothesis matcher (type of problem
solving) built out of HYPER, or the AIRCYL (domain/concept) hierarchical designer (type of problem
solving). A given problem solver will typically need to access other problem solvers for information to
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continue its problem solving, e.g., the BadFuel matcher will need to know if various specific data items are I
present and for this it will need to access the data inference problem solver built from the tool IDABLE.

When the KBS is being built using the tools in the tool'set, the knowledge engineer controls and 3
directs the interaction among problem solvers by shaping and directing the messages appropriately.
Without getting into details, the idea is simple: Each problem solver is characterized by (i) the kind of
questions it can accept: e.g., the Badfuel matcher can accept messages that concern confidence values
about the Badfuel concept and (ii) the kind of questions that it can ask, e.g., Badfuel concept can ask the I
database problem solver for values of specific data attributes. In the current version of the toolset these
decisions have to be explicitly made by the knowledge engineer, i.e., which problem solver has to send
what types of queries to what other problem solvers has to be specified at the time the system is being I
built. The toolset itself is built on top of a substratum that is object- and message-oriented so that building
additional generic tools within the framework is a straightforward thing to do. See [261 for details on how
the toolset is built up in this way. 3

For a complex application which involves portions which match the problem solving behaviors of
the tools in the toolset, but which also has portions which require other methods of reasoning and
represention not included within the current toolset, escaping to the object level or even the Usp level (as
in current implementations) to program Al or numerical techniques may be necessary and the toolset
implementation supports this. U
6 Concluding Remarks

In the late 70's, when we embarked on this line of research - characterized by an attempt to
identify generic tasks and the forms knowledge and control required to perform them - the dominant I
paradigms in knowledge-based systems were rule and frame type architectures. While our work on
use-specific architectures was evolving, dissatisfaction at the limited vocabulary of tasks that these
architectures were offering was growing at other research centers. Clancey [17] in particular noted the
need for specifying the information processing involved by using a vocabulary of higher level tasks. Task-
level architectures have been gathering momentum lately: McDermott and his coworkers [281 have built
SALT, a shell for a class of design problems, where critiquing proposed designs by checking for
constraint-violations is applicable. Clancey [18J has proposed a shell called Heracles which incorporates I
the heuristic clasification strategy for diagnosis. Bennett [2] presents COAST, a shell for the design of
configuration problem solving systems. All these approaches share the basic thesis of our own work, viz.,
the need for task-specific analyses and architecture support for the task. However, there are some
differences in assumptions and methodology in some cases that needs further discussion.

The following conceptual distinctions are useful:

" "Building blocks" out of which more complex problem solvers can be composed, such as the

tasks in the theory presented in the paper. 1

" Explicit high level strategies which we want a system to follow, where the strategies are

expressed in terms of some set of tasks. Clancey's Heuristic Classification is an example of 1

this. McDermott's and Marcus' Salt system uses a strategy called "propose and refine"

which is also of this type. 3
" Compound tasks, such as the form of diagnosis described in earlier in the paper. An

architecture for this compound task will bring with it its constituent generic tasks and also

help in integrating Ithe problem solving from the viewpoint of the overall task. In our

I.
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Laboratory, we are at work on building such diagnostic-level problem solving architectures for

diagnosis of process engineering systems.

. Tasks which do not necessarily correspond to those human experts do well, but nevertheless

can be captured as appropriate combinations of knowledge and inference and a clear

function can be associated with them, e.g., constraint satisfaction schemes. Bennet's Coast

system is an example of this.

Once we identify task-level architectures as the issue for highest leverage, then a number of
immediate questions arise: what is the criterion by which a task is deemed to be not only generic but is
appropriate for modularization as an architecture? How about an architecture for the generic task of
"investment decisions"? Diagnosis? Diagnosis of process control systems? Is uncertainty management
a task for which it will be useful to have an architecture? Are we going to proliferate a chaos of
architectures without any real hope of reuse? What are the possible relationship between these
architectures? Which of these architectures can be built out of other architectures? I do not propose to
answer all these questions here, but they seem to be the appropriate kinds of questions to ask when one
moves away from the comfort of universal architectures and begins to work with different architectures for
different problems.

At this stage in the development of these ideas, empirical investigation of different proposals from
the viewpoint of usefulness, tractability and composability is the best strategy. From a practical viewpoint,
any architecture that has a useful function and for which one can identify knowledge primitives and an
inference method ought to be considered a valid candidate for experimentation. As the tools evolve, one
may find that some of the architectures are further decomposable into equally useful, but more primitive,
architectures; or that some of them do not represent particularly useful functionalities, and so on.

The generic tasks that are represented in our toolbox were specifically chosen to be useful as
technology for building diagnosis, planning and design systems with compiled expertise. For capturing
intelligent problem solving in general, we will undoubtedly require many more such elementary strategies
and ways of integrating them. For example, the problem solving activities in qualitative reasoning and
device understanding, e.g., qualitative simulation, consolidation, and functional representation All these
tasks have well-defined information processing functions, specific knowledge representation primitives
and inference methods. Thus candidates for generic information processing modules in our sense are
indeed many.

What does all this mean for an architecture of intelligence?

I am led to a view of intelligence as an interacting collection of functional units, each of which
solves an information processing problem by using knowledge in a certain form and corresponding
inference methods that are appropriate. Each of these units defines an information processing faculty. I
discuss elsewhere [141 the view that these functional units share a computational property: they provide
the agent with the means of transforming essentially intractable problems into versions which can be
solved efficiently by using knowledge and inference in certain forms. For example, Goel et al [21] show
how classification problem solving solves applicable cases of diagnosis with low complexity, while
diagnosis in general is of high complexity. Knowledge is indeed power, but how it acquires its power is a
far subtler story than the first generation knowledge based systems made it appear.

This view generates its own research agenda: As a theory, the generic tasks idea has quite a bit of
work ahead of it in terms of a coherent story about how the tasks come together, are integrated and how
more complex tasks such as planning come about from more elementary ones. How complex inference
methods develop from simpler ones and how learning shapes these functional modules are issues to be
investigated.
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The relationship of task-specific architectures such as the GT ideas in this paper to, on one hand,

more general architectures, such as SOAR [331, and on the other to "weak methods* is an intriguing one.
My view is that from the perspective of modeling cognitive behavior, a GT-level analysis provides two
closely related ideas which give additional content to phenomena at the SOAR architecture level. On the
one hand, the GT theory provides a vocabulary of goals that a SOAR-like system may have. On the other
hand, this vocabulary of goals also provides a means of indexing and organizing knowledge in Long Term
Memory such that when SOAR is pursuing a problem solving goal, appropriate chunks of knowledge and
control behavior are placed in Short Term Memory for SOAR to behave like a GT problem solver. In this
sense a SOAR-like architecture, based as it is on goal achievement and universal subgoaing, provides
an attractive substratum on which to implement future GT systems. In turn, the SOAR-level architecture
can give graceful behavior under conditions that do not match the highly compiled nature of GT-type
problem solving.

III
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ABSTRACT

Design problem solving is analyzed as an information-processing task: the task and its information
requirements are analyzed. This analysis suggests possible decompositions of the task into a number of
subtasks, depending upon what kinds of knowledge are in fact available in a domain. This decomposition
can be carried on several levels until we reach an understanding of how various generic problem solving
capabilities can come together to help solve the design problem. This analysis suggests possible
problem solving architectures for design. A number of Al approaches to design are discussed in this
perspective and it is shown how each of then can be understood as solving a particular version of the
design problem, using one of the avchitectures that arises from the analysis in such a way that the
architecture matches the knowledge available in the domain.
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I
2. Design: An Information Processing-Level Analysis i

2.1. A Framework for Design Problem-Solving 3
2.1.1. What Is the Design Problem?

In this chapter we look at design as an information processing task: i.e., specify what kinds of input and 1
output characterize the task abstractly. This can then form the basis for investigating what kinds of
knowledge and inference processes can help solve what parts of the task. We will avoid talking in terms
of particular methods of representation of knowledge, say, rules or frames, but concentrate instead on
what needs to be represented, and what types of inferences are needed. Once the nature of the Isubtasks in design becomes clear, then the question of how to implement them can be undertaken. The
reader might remember that one of our criticisms of the expert system area has been that implementation
level phenomena have been allowed to interfere with an analysis of task-level phenomena. We would like
to keep them clearly separate.

Design is a very complex activity and covers a wide variety of phenomena: from planning a day's
errands to theory construction in science to composing a fugue are design activities. In order to give Isome focus and use some shared intuitions, let us restrict the scope in this discussion to the design ofartifacts that satisfy some goals.

A designer is charged with specifying how to make an artifact which satisfies or delivers some goals.
For each design task, the availability of a (possibly large and generally only implicitly specified) set of
primitive components can be assumed. The domain also specifies a repertoire of primitive relatons or
connections possible between components. An electronics engineer, e.g., may assume the availability of Itransistors, capacitors, etc., of various types when he is designing a waveform generator, and examples
of primitive relations in that domain are serial and parallel connections between components. Similarly,
an architect might assume the availability of building materials. If the architect has to design an unusual
brick as part of his architectural specification, at least he can assume the availability of clay, and so on. 1Of course design can also be recursive: if a certain component that was assumed to be available is in fact
not available, the design of that can be undertaken at the next round, and the domain for the component
may be rather different than the original domain, as in the example of building and brick design. If the I
component design is not successful, the original design may be discarded and the task undertaken again.

'The design task can then be specified as follows: 3
. Complete specification of a set of 'pnmive' components and their relations so as to meet a

set of constraints.
Some of the constraints will refer to the functions or goals of the artifact, some may pertain to the
parameters of the artifact (e.g., 'total weight to be less than I ton'), yet others may provide constraints on Ithe design process itself, and finally constraints may apply to the process of assembling the artifact
(manufacturing constraints). Often the goals may not be stated explcitly or in sufficient detail at the start
of the design process. In hard design problems, the world of primitive objects may be very open-ended. I
In spite all such caveats, the above working definition is a good starting point for our discussion.

This definition also captures the domain-independent character of design as a generic activity at some
level of abstraction. Planning, programming and mechanical design all share the above definition to a
significant degree. Note that the knowledge needed and many of the detailed mechanisms will of course
be domain-specific. For example, mechanical design may call for significant amounts of spatial
reasoning, while the electrical domain may only involve .opological reasoning. But the nature of the 3
design problem as a whole has many commonalities at the level of the above definition, and as we shall
see, at the level of many of the subprocesses.

This definition is not meant to imply the existence of one method for all design. The main message of 3
our work is that design actually consists of a large number of distinct processes that work together, each
contributing some information needed during the design process. In fact the apparent difference in the

I.
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design process in different domains and different designers can be explained by the dominance of some
of these subprocesses over the others due to differences in the knowledge available.

The above definition gives a clue to why the design problem can be hard for Al and often also for
people. In realistic domains the size of the set of primitive objects is quite large and implicit. The design
problem is formally a search problem in a very large space for objects that satisfy multiple constraints.
Only a vanishingly small number of objects in this space constitute even "satisficing", not to speak of
optimal, solutions. What is needed to make design practical are powerful strategies that radically shrink
the search space.

2.2. What Kind of Space in Which To Search?
The idea of search in a state space goes back to the early days of Al, and Newell [Newell, 1980] has

formalized the Problem Space Hypothesis essentially stating that all goal-directed behavior takes place in
some problem space.

Before search can take place, the problem space needs to be defined. But design problem solving
does not have a unique problem space. Different kinds of problem spaces can be visualized, each
appropriate for some kinds of domain knowledge and not others. For search in a problem space to be
operationally definable, problem states, operators which transform one problem state into a set of
successors, and some ordering knowledge that helps to choose between altematives need to be
available. For search to be practical, generation of successors and choice among alternatives should not
themselves be complex problem solving activities. The last condition means that domain knowledge
should be directly available which can be applied to generate successors and choose among them.

Let us consider the transformation approach to design [Barstow, 1984;Balzer, 19811 as a concrete
illustration of these issues. We can consider the set of specifications to be the initial state, and a fully
designed artifact to be the end state. Operators transform parts of the specifications into alternative
design commitments that will realize them. So an intermediate state will consist of design commitments
which realize some of the specifications along with remaining specificafions. The process of design can
be thought of as searching for a series of design commitments that results in a goal state.

While this is formally satisfactory, knowledge may not be available in all domains for successor
generation and alternative selection. In the programming domain to which this idea has been applied,
there seem to be several examples where knowledge of this form is in fact available. However, this
problem space is not of general applicability. (No single problem space is.) In some domains, the
constraints as stated may not be factorizable in this way, and there may be significant interactions
between the designs that are chosen to meet parts of the constraints. There is also no guarantee that the
design process can always correspond to incremental choices. Large subsystems may be designed first
and then only design within subsystems may proceed. Thus the actual design process in that domain
may not correspond to navigation in this transformation problem space. Knowledge may be directly
available which cuts a swath across the space, so that several constraints together are realized by a
precompiled design that is recognized as applicable (design plans). Finally, in many domains, the
problem is reformulated by a decomposition so that a number of disjoint local spaces, each corresponding
to a subproblem are created. (We will discuss decomposition and design plans shortly in greater detail.)

The point of the discussion is this. Which problem space is used depends on the forms in which
domain knowledge for representation and control are available. Using an inappropriate problem space
will result in artificial heuristic functions being used which do not capture the real structure of domain
knowledge.

We propose that in design problem solving a variety of types of knowledge can be identified, each of
wnich helps solve a portion of the design problem in a computationally efficient way. Expertise consists of
an accumulation of a repertoire of such knowledge. However, unlike the current view in the expert
systems area, this expertise is not viewed as collections of pieces of knowledge, to be used by a uniform
inference technique. Instead, knowledge comes in various generdc forms, each structured in
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characteristic ways and using inference methods that are appropriate to it. Each type of knowledge can 3
produce some information that may be needed or useful during design, or can generate a part of the
design solution. Conversely, each type of knowledge requires information of certain types to be available
before it can b3 useful. 3

Thus the picture that we would like to give of design problem solving is as a cooperative activity
between multiple types of problem solvers, each solving a subproblem using knowledge and inference of
specific types, and communicating with other computational modules or problem solvers for information I
that is needed for it to perform its task, or to deliver information that they need for their tasks. Thus an
analysis of design as problem solving consists of identifying these subprocesses, their information
processing responsibilities, and the knowledge and inference needed to deliver these functions. We call
this kind of analysis an information processing analysis of design. This is the task of the next section.

2.3. Information processing Analysis of Design I
The style of analysis will be to identify subtasks in design, and characterize what kinds of information or

solution they are responsible for providing. Some of these subtasks can be performed in a number of
different ways: an Al solution is only one way. For example, during design, it will be necessary to find if a
certain design requirement is met. A traditional computational algorithm may be able to do that in some U
cases, e.g., finding out if stress in a member is less than a certain amount may be done by invoking a
finite element analysis algorithm. Sometimes this information may require an Al-type solution, involving
an exploration of some space in a qualitative way, e.g., by doing a qualitative simulation of the artifact. In I
what follows we will only describe issues associated with Al-type solutions for these subtasks, but the
larger possibility needs to be kept in mind in the actual design of knowledge-based systems for design.

During the discussion we will try to relate the framework to a number of previous and current 3
approaches to design. But the literature on design is vast. Even within Al, work on design has
proliferated over the last decade. We do not intend to be exhaustive in our coverage. Our intent is to
point to some of the other work as a way to illuminate the discussion.

We will describe a number of subprocesses or subtasks in design and describe the role they play in
design. The design process can be usefully separated into those processes that play a role in the
"generate" part and those that help in the "test" part. We subdivide our discussion into two groups of
processes: those that are responsible for proposing or making design commitments of some sort, and
those that serve an "auxiliary" role, i.e., generate information needed for the proposers, and help test the
proposed design.

2.3.1. Processes That Propose Design Choices
(1): Decomposition. This a very common subpart of the design activity. We will use this process as

an example of information processing analysis, and describe it in terms of all the features that such an
analysis calls for: types of knowledge, information needed, and the inference processes that operate onthis form of knowledge. 3

Knowledge of the form D -> (D1, D2, .. Dn), where D is a given design problem, and Di's are "smaller"
subproblems (i.e., associated with smaller search spaces than D) is often available in many domains. In
many domains, there may be a number of alternate decompositions available, and so choices (and
possible backtracking) will need to be made in the space of possible decompositions. Repeated
applications of the decomposition knowledge produce design hierarchies. In well-trodden domains,
effective decompositions are known and little search at that level needs to be conducted as part of routine
design activity. For example, in automobile design, the overall decomposition has remained largely i
invariant over several decades.

Dependable decomposition knowledge is extremely effective in controlling search since the total search
space is now significantly smaller. This power arises from the fact that decompositions represent a
previously compiled solution to a part of the design problem, and thus at run-time the design problem
solver can avoid this search. 3

3.
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Information Needed: The decomposition process needs two kinds of additional information for it to be
effective.

* How the goals or constraints on D get translated into constraints on the subproblems D1,...
Dn.

e How to glue the designs for D1, D2,.. Dn into a design for D.

Information of the above types may be given as part of the decomposition knowledge or can be
obtained by accessing another processor which can produce that information. We will shortly refer to a
method called constraint posting that has been proposed for generating constraints on subproblems.
How to glue the designs for subproblems may require additional problem solving, such as simulating D1
and D2, e.g., and finding out exactly where and how the gluing can occur. The Critter system
[Kelly, 1984], e.g., provides such a simulation facility applicable under certain assumptions that helps

both in generating constraints for the subproblems and in gluing the solutions together.

Inference Process: There are two sets of inference processes, one dealing with which sets of
decompositions to choose, and the other concerned with the order in which the subproblems within a
given decomposition ought to be attacked. (Remember that a decomposition merely converts a design
problem into a set of presumably "smaller" problems, which still need to be solved for the decomposition
to be successful.)

For the first problem, in the general case, the decomposition will produce an AND/OR node, i.e., will
produce decompositions some of which are alternatives and others all of which need to be solved.
Finding the appropriate decomposition may involve searching in a space represented as an AND/OR
graph. But as a rule such searches are expensive. Routine design problems should not require
extensive searches in the decomposition space. To avoid the search problem but to use domain
knowledge about decomposition, human-machine interaction between human experts and machine
processing can be arranged so that the machine proposed alternative decompositions, and the human
chooses the most plausible ones. Precisely this sort of shared labor is used in the VEXED system
[Mitchell, etal, 19851 during its problem decomposition phase.

The problem of the order in which to attack the problems in the decomposition list when combined with
the problem of searching in the decomposition space can make the total search very complex, since the
investigation of the subproblems in a given decomposition will be in general non-reusable if that
decomposition turns out not to be successful. This explains the extreme difficulty of the design problem in
the general case. However, in most cases of routine design, the decomposition knowledge leads to a
design hierarchy as mentioned. The default control process for investigating within a given design
hierarchy is then top-down. While the control is top down, the actual sequence in which design problems
are solved may occur in any combination of top-down and bottom up manner. For example, in designing
an electronic device, a component at the tip level of the design hierarchy may be the most limiting
component and many other components and subsystems can only be designed after that is chosen. The
actual design process in this case will appear to have a strong bottom up flavor. Control first shifts to the
bottom-level component, and the constraints that this component design places on the design of other
components are passed up.

A related issue is one of whether the control should be depth-first or breadth first Again, this is very
much a function of the domain. The specification language for control behavior in this process should be
expressive enough for a variety of control possibilities along these lines.

Decomposition is an ubiquitous strategy in Al work in design. McDermott's NASL system
[D.V.McDermott, 1978] uses this extensively. Freeman and Newell [FreemanandNewell, 1971] discuss

various decomposition criteria, including functional and structural. The transformational design work of
Barstow and Mostow uses decomposition in a degenerate form: the constraint set is such that subsets of
it correspond to different design problems, and so can be separately expanded.

(2): Design Plans. Another pervasive form of design knowledge, again that represents precompiled
partial design solutions, is a design plan. A design plan specifies a sequence of design actions to take for
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producing a piece of abstract or concrete design. In abstract design, choices are made which need to be
further "expanded" into concrete details at the level of primitive objects. These design plans are indexed
in a number of ways, two of them being indexing by design goals (for achieving <goab>, use <plan>), or
by components (for designing <palb>, use <plan>). Since plans may have steps that point to other plans,
design plans can subsume decomposition knowledge. From the viewpoint of complexity reduction, the I
central contribution plans make is as an encoding of previous successful exploration of a problem space
by abstracting from the experience of an individual expert or a design community in solving particular
design problems. 3

Each goal or a component may have a small number of alternate plans attached to them, with perhaps
some additional knowledge that helps in choosing among them. A number of control issues arise about
abandoning a plan and backing up appropriately, or modifying a plan when a failure is encountered.

The inference process that is applicable can be characterized as instandate and expand. That is, the
plan's steps specify some of the design parameters, and also specify calls to other design plans.
Choosing an abstract plan and making commitments that are specific to the problem at hand is the 3
instantiation process, and calling other plans for specifying details to portions is the expansion part.

A number of additional pieces of information may be needed or generated as this expansion process is
undertaken. Information about dependencies between parts of the plan may need to be produced at
runtime (e.g., discovering that certain parameters of a piston would need to be chosen before that of the
rod), and some optimizations may be discovered at run time (e.g., the same base that was used to attach
component A can also be used to attach component B). For example, Noah [Sacerdoti, 19771 can be !
understood as a system that instantiates and expands design plans. In Noah, corresponding to each goal
of the artifact under design, there is a stored procedure which can be interpreted as a design plan. These
plans can call other procedures/plans until a hierarchy is procedures is created. Noah concentrates its
problem solving on recognizing ordering relations and redundancies between the components of the plan.

The idea of design plans has been used successfully in the domain of programming or algorithm
design (Rich, etal, 1979], [JohnsonandSoloway]. The notion that plans constitute a very basic knowledge I
structure has been with us from the 1950's when this idea was discussed extensively by Miller, Galanter
and Pribrarn [Miller, etal, 1960]. Schank and Abelson [SchankandAbelson, 19771 have also discussed
the use of plans as a basic unit of knowledge. The Molgen work of Friedland [Friedland, 1979] uses
design plans as a basic construct. More recently Mittal's PRIDE system [Mittal, etal, 1986] has used them
for design knowledge representation.

(3): Design by Critiquing and Modifying Almost Correct Designs. A variation on the design plan I
idea is that the designer has a storehouse of actual successful designs indexed by the goals and
constraints that they were designed to satisfy. Sussman [Sussman, 1973] has proposed that a design
strategy is to choose an already-completed design that satisfies constraints closest to the ones that apply
to the current problem, and modify this design for the current constraints. This process needs information
of the following kinds.

" Matching. How to choose the design that is "closest" to the current problem? Some notion
of prioritizing over goals or differences in the sense of means-ends analysis may be needed, I
if this information cannot be generated by a compiled matching structure. In some cases,
some analogical reasoning capabilities may be appropriate by which to recognize "similar"
problems. 3

" Critiquing Why does the retrieved design fail to be a solution to the current problem? This
analysis is at the heart of leaming from failure, and sophisticated problem solving may be
needed to analyze the failure. This capability of critiquing a design is of more general
applicability than for this particular design process.

" Modifying. How to modify the design so as to meet with the current goals? In many cases,
this information may be available in a compile form, but in general, this also requires
sophisticated problem soMng.

I
I
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The processes of critiquing and modifying have more general applicability than as parts of this
particular design process. We discuss criticism as one of the auxiliary processes later in this section.
Design modification, however, is a useful process in the "generate" part of design, so we discuss some of
the issues related to it here.

Modification as a subprocess takes as input information about failure of a candidate design and
changes the design. Depending upon the sophistication about failure analysis and other forms of
knowledge available, a number of problem solving processes are applicable:

o A form of means-ends reasoning, where the differences are "reduced" in order of 'most toleast significant.

* A kind of hill-climbing method of design modification, where parameters are changed,
direction of improvement noted, and additional changes are made in the direction of maximal
increment in some measure of overall performance. This form can even constitute the only
method of design in some domains: assign arbitrary values to the parameters, and change
them in a hill-climbing fashion until a maximum is reached, and deliver that as the design.
This is especially applicable where the design problem is viewed as a parameter choice
problem for a predetermined structure: The system called DOMINIC [Howe, etal] engages in
this form of design problem solving.

* Dependencies can be explicitly kept track of, in such a way that when a failure occurs, the
dependency structure directly points to where a change ought to be made.
Dependency-drected backtracking was proposed by Stallman and Sussman [1977] as one
approach to this problem. Mittal [MittalandAraya, 1986] proposes a variation on dependency
tracking for modification of designs on failure.

* What to do under different kinds of failures may be available as explicit domain knowledge in
routine design problems. This information can be attached to the design plans. The work to
be described in later chapters uses this highly compiled form.

Sussman 11973] has investigated the retrieval and use of previous designs in circuit design. Schank
(19831 has been an advocate of case-based reasoning for a variety of problems.

(4): Design by Constraint Processes. For some design problems a process of simultaneous
constraint satisfaction by constraint propagation can be employed. In order for this to work
computationally effectively, it is best if the structure of the artifact is known and design consists of
selecting parameters for the components. Constraints can be propagated in such a way that the
component parameters are chosen to incrementally converge on a set that satisfies all the constraints.
Macworth [1977] provides a good discussion of several techniques for this. This is an instance of what is
called, in optimization theories, relaxation procedures1 . Human problem solvers aren't particularly good
at this form of information processing without pencil and paper. The incremental convergence process
can be treated as a form of problem space exploration, so we are including it in this discussion.

Constraint satisfaction processes can be viewed as applying design modification repeatedly and
incrementally. Thus many of comments we made earlier regarding design modification are applicable. In
particular, some of the constraint propagation techniques can be viewed as versions of hill-clinbing
methods in search. And variations such as dependency-directed changes to parameters can be adopted
during each modification cycle. More complex processes such as constraint-posting can be used where
additional constraints are generated as a result of choices made for earlier parameter choices. These
constraints are used for remaining parameter choices.

Configi in problems are an interesting and well-known class of problems (made famous by the R1
system [J.McDermott, 1982]) in design. Some versions of them can be decomposed into subproblems

1Unfostnaely, thi use of the term relaxation interfere with anothw use of it in design, viz., reaxing t cortsiufts so that a
hard design problem may be onverted into a relatvy easiw one.
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whose slutions can be neatly glued back together. In fact Rl's problem solving is done as a linear I
series of subtasks. However, in the general case, these problems often have no clear decomposition into
subproblems, because of extensive interactions between various parts of the design. On the other hand,
many configuration problems have the tractable feature that most of the components uf the device are I
already fixed, and only their connections and a few additional components to mediate the connections
need to be chosen. This makes iterative techniques applicable by making it likely that one can converge
on the solution. Constraint satisfaction methods are often applicable to configuration problems. Marcus,
McDermott and Wang [1985] discuss a strategy called propose and revise, where commitments are made
for some parts of the design, which generates additional constraints, and if later parts in the design
problem cannot be solved, earlier commitments are revised. Frayman and Mittal [19871 discuss the
configuration task abstractly.

Caution! Formally all design can be thought of as constraint satisfaction, and one might be tempted to
propose global constraint satisfaction as a universal solution for design. The problem is that these
methods still can constitute a fairly expensive way to search the space. For example, propose and revise U
can end up searching the entire space in difficult problem spaces and hill-climbing methods can get stuck
at local optima. Hence these methods are not a universally applicable for practical design. Other
methods of complexity reduction such as problem decomposition are still very important in the general
case. They can create subproblems with sufficiently small problem spaces in which constraint
satisfaction methods can work without excessive search.

Human problem solvers need computational assistance in executing constraint satisfaction 3
approaches: the methods are computationally intensive and place quite a burden on short term memory.
As long as attempts are not made to use them as universal design methods, they can be effective
computational techniques for portions of the design problem. 3
2.3.2. Auxiliary Processes

So far the subprocesses in design that we have considered:
decomposition, design plan instantiation and expansion, modification of an almost correct I
design, constraint satisfaction,

contribute to design by proposing some design commitments. Along the way, we have referred to some
other processes which serve the former by providing information that they need. Let us discuss them I
briefly here.

(1): Goal/Consteaint Generation for Subproblems. Given a decomposition D -> (D1, D2, .. Dn), one 3
will need to know how the goals/constraints of Dare translated into goals/constraints for the subproblems.
In many domains, this information is part of the decomposition knowledge. But if it is not available,
additional problem solving is called for. The literature on constraint-posting that we referred to earlier
proposes methods applicable in some cases.

Vexed [Sternberg] provides an example of constraint generation for subproblems given a particular
problem decomposition. In this domain the subproblems have a serial connection relation. For example, I
D may be implemented by two modules D1 and D2 connected in series. A constraint propagation
scheme (called CRITTER [Kelly, 1984]) takes the input to D and produces the constraints on Dl's output/
D2's input Design of D1 and D2 can then proceed. 3

(2): Recomposltlon. We alluded to this in our discussion on decomposition: how to glue the solutions
of the subproblems back into a solution for the original problem. Integrating them may require simulating
the subdesigns and find how they interact. Or other methods of problem solving may be called for.
Scientific theory building involves assembling portions of theories into larger coherent theories, and needs
powerful interaction analyses. RED [Josephson, etal, 1987] proposes an especially powerful strategy for
composing explanatory theories.

(3): Design Verification: This is part of the "test" component of the design activity: whether a
candidate design delivers the functions and meets with any other relevant constraints. In most cases, it
can be done by straightforward compiled computational methods, e.g., "add weights of components and 3

I.
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check that it is less than x," or invoking possibly complex mathematical formulae, such as a finite element
analysis, that does not involve problem solving. In some cases, additional problem solving may be called
for for verification. For instance, qualitative simulation of a piece of machinery to decide if any of its parts
will be in the path of another part may be needed for verifying a proposed design.

(4): Design Criticism. At any stage in design, any failure calls for analyzing the candidate design for
reasons for failure. This form of criticism played a major role in the method of design by retrieving an
almost correct design. In most routine design, fairly straightforward methods will suffice for criticism, but
in general this calls for potentially complex problem solving. Design modification uses the results of
criticism.

2.4. Implications of Above Analysis
The analysis of the design process in terms of subprocesses with well-defined information processing

responsibilities helped us in identifying types of knowledge and inference needed. This in turn directly
suggests a functional architecture for design with these subprocesses as building blocks. It also suggests
a principled way in which to define the human-machine interaction in design. Firstly, whenever
knowledge and control can be explicitly stated for one of the modules or building blocks, that module can
be built directly, by using a knowledge and control representation that is appropriate to that task.
Secondly, if knowledge for a module is not explicitly available, the human can be part of the loop for
providing information that that module would have been responsible for. For example, failure analysis
and common sense reasoning involving space and time are difficult problem solving tasks. These tasks
may be needed for the performance of design modification and design verification, respectively. The
human/machine division of responsibility may be done in such a way that the machine turns to the user
for the performance of these tasks. As these tasks are better understood, they can be incrementally
brought into the machine side of the human/machine division of labor.

Another kind of human machine interaction is possible is possible in this framework. Note that each
subprocess is characterized both by specific types of knowledge and by inference and related control
problems. We mentioned, e.g., that search in the space of problem decompositions can become quite
complex. One way in which a module can interact with a domain expert is by proposing available
knowledge and letting the human make the control choices by using knowledge that has not been made
explicit in the problem solving theory. As a practical matter, this can be an effective way of using the
module as a knowledge source, even without a complete theory of problem solving using that knowledge.
The VEXED system that we have mentioned in fact works in this mode: it proposes possible
decompositions, and the user is asked to choose the one he or she would like to pursue. Similarly, when
a design system's choice of design plans fails, it may turn to the user for choosing alternative plans.

Let us elaborate on the functional architecture for design that results from this analysis. Because each
subprocess uses characteristic types of knowledge and inference, a "mini-shell" can be associated with it
and knowledge and inference can be directly encoded using that shell. Since each of the tasks has a
clear information processing responsibility, the modules can communicate with each other in terms of t~a
information that defines the input and outputs of these modules. Thus the modularity that results is a
task-level modularity.

In the rest of this book, we provide the details of the functional architecture for one type of design, a
form of routine design that we have termed Class 3 Design. This way of analyzing design and identifying
architectures out which design problem solvers can be built is what is novel about the point of view of the
book. We will soon proceed to a descrption of our informal classification of design problems, but before
that we need to take note of some other suggestions, that have been made for design problem solving
and relate them to our analysis.
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2.5. Classes of Design I

The above analysis of design subprocesses can be used to provide an informal classification of design
problems. Many of the processes in the "test" part of design, such as design verification by qualitative
simulation, can be arbitrarily complex, but they are not particularly specific to design. The design process
simply calls upon these other problem solving skills. On the other hand, many of the processes in the
"generate" portion are quite specific to design as a problem solving process, so our classification is basedlargely on the subprocesses in the "generate" part of design. 3

Each of the processes
*decomposition, design plan instantiation and expansion, modification of similar designs,

constraint satisfaction, I
performs some aspect of design, using information either directly available or supplied by auxiliary
problem solving or other computational processes. Each of them comes with a set of control problems
that can be more or less complex, and needs knowledge in certain forms. 3

The framework suggests that design by decomposition, i.e., breaking problems into subproblems, by
plan synthesis where necessary, and by plan selection where possible, are the core processes in
knowledge-based design, i.e., it gives importance to the first two processes in the above list as the major I
engines of complexity reduction in design. The classification is largely based on the difficulty of these
subtasks or processes, in particular on the completeness of knowledge, the ready availability of the
needed auxiliary information and the difficulty of the control issues. 3
2.5.1. Class 1 Design

This is open-ended "creative" design. Goals are ill-specified, and there is no storehouse of effective
decompositions, not to speak of design plans for subproblems. Even when decomposition knowledge is I
available, most of the effort is in searching for potentially useful problem decompositions. For each
potential subproblem, further work has to be done in evaluating if a design plan can be constructed.
Since the design problem is not routine, considerable problem solving for many of the auxiliary processes Iwill need to be performed.

The average designer in industry will rarely, if ever, do Class 1 design, as we consider this to lead to a
major invention or completely new products. It will often lead to the formation of a new company, division,
or major marketing effort. This then is extremely innovative behavior, and we suspect that very little
design activity is in this class.

2.5.2. Class 2 Design
Class 2 design is characterized by powerful problem decompositions already available, but design

plans for some of the component problems in need of de nova construction or substantial modification.
Design of a new automobile, e.g., does not involve new discoveries about decomposition: the structure of
the automobile has been fixed for quite a long time. On the other hand, several of the components in it
constantly undergo major technological changes, and routine methods of design for some of them may no
longer be applicable.

Complexity of failure analysis will also take a problem away from routine design. Even if design plans
are available, if the problem solver has to engage in very complex problem solving procedures in order to
decide how to backtrack, the advantage of routine design is reduced. In short, whenever substantial
modifications of design plans for components are called for, or when synthesis in the design plan space isespecially complicated, we have a Class 2 problem. 3
2.5.3. Class 3 Design

This is relatively routine design: effective problem decompositions are known, compiled design plans
for the component problems "are known, and actions to take on failure of design solutions are also
explicitly known. There is very little complex auxiliary problem solving needed. In spite of all thissimplicity, the design task itself is not trivial: complex backtracking can still take place. The design task is

I
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still too complex for simple algorithmic solutions or table look up.

Class 3 problems are routine design problems, but still requiring knowledge-based problem solving.
The ensuing chapters of this book deal with an approach to building knowledge-based systems for routine
design problems of this type. The processes described here can work in conjunction with auxiliary
problem solvers of various types, but the theory for them is not developed further in this book. The
examples used all assume that the information to be provided by the auxiliary design processes, e.g.,
design criticism, verification, and subproblem constraint generation, are all available in a compiled
manner.

2.5.4. A Class 3 Product
In a large number of industries, products are tailored to the installation site while retaining the samestructure and general properties. For example, an Air-cylinder intended for accurate and reliable

backward and forward movement of some component will need to be redesigned for every new customer
in order to take into account the particular space into which it must fit or the intended operating
temperatures and pressures. This is a design task, but a relatively unrewarding one, as the designer
knows at each stage of the design what the options are and in which order to select them. Note that that
doesn't mean that the designer knows the complete sequence of steps in time (i.e., the trace) in advance,
as the designer has to be in the problem-solving situation before each decision can be made. There are
just too many combinations of requirements and design situations to allow an algorithm to be written to do
the job.

As this tends to be unrewarding work for humans and as this type of non-trivial problem appears to be
possible to do by computer there is strong economic justification for us to attack this problem.

2.5.5. Class 3 Complexity
The complexity of the class 3 design task is due not only to the variety of combinations of

requirements, but also to the numerous components and sub-components, each of which must be
specified to satisfy the initial requirements, their immediate consequences, the consequences of other
design decisions, and the constraints of various kinds that a component of this kind will have.

While class 3 design can be complex overall, at each stage the design alternatives are not as open-
ended as they might be for class 2 or 1, thus requiring no planning during the design. In addition, all of
the design goals and requirements are fully specified, subcomponents and functions already known, and
knowledge sources already identified. For other classes of design this need not be the case.
Consequently, class 3 design is an excellent place to start in an attempt to fully understand the complete
spectrum of design activity.

Note that we are not merely interested in producing an expert system that produces a trace which is
the same as or similar to a designers, nor are we solely interested in arriving at the same design -
although both are amongst our goals. We are concerned with producing an expert system that embodies
a theory of class 3 design and demonstrates the theory's viability.

Imprecision of the Classifcago The classification that we have described is a useful way to get a
bearing on the complexity of the design task, but it is not meant to be formal or rigorous. Neither is the
term routine design. The approach described in this book is intended to provide a starting point for
capturing some of the central phenomena in routine design, but it is not intended to be a complete
account of routine design.
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From Numbers to Symbols to Knowledge Structures:
Artificial Intelligence Perspectives on the Classification Task

B. CHANDRASEKARAN and ASHOK GOEL

Laboratory for Artificial Intelligence Research
Department of Computer and Information Science

The Ohio State University

Abstract

We consider the very general information processing task of classification, and review it from the

perspectives of the knowledge-based reasoning, pattern recognition, and connectionist paradigms in

Artificial Intelligence, paying special attention to knowledge-based classificatory problem solving. We

trace the evolution of the mechanisms for classification as the computational complexity of the problem

increases, from numerical parameter setting schemes, through those using intermediate abstractions and

then relations between symbols, and finally to complex symbolic structures which explicitly incorporate

domain knowledge. The paper can be viewed as a bridge-building activity, describing the approaches of

three different research communities to the same general task.
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I. INTRODUCTION

U Classification is a very general information processing task in which specific entities are mapped

onto general categories. As the amount of data about the entity to be classified and the number of

classificatory categories increase, typically so does the corputational complexity of the task. In this

paper, we review the classification task from the perspectives of the knowledge-based reasoning, pattern

recognition, and connectionist paradigms in Artificial Intelligence (Al), paying special attention to

3 knowledge-based classificatory problem solving. We trace the evolution of the mechanisms for

classification as the complexity of the problem increases, from numerical parameter setting schemes,

through those using intermediate abstractions and then relations between symbols, and finally to complex

symbolic structures which explicitly incorporate domain knowledge. The paper can be viewed as a

3 bridge-building activity, describing the approaches of three different research communities to the same

general task. It can also be viewed as an attempt, by using the classification task as a concrete example,

3 to give an intuitive account of how the information processing activity underlying thought necessarily

evolved into complex symbolic processes in order to handle increasing complexity of problems and

3 requirements of flexibility.

II. THE CLASSIFICATION TASK

Classification, sometimes called categorization in the cognitive science literature, as an information

3 processing task can be functionally specified by the information it takes as input, and the information it

gives as output. In its general form, the input to the classification task is a collection of data about some

3 specific entity (e.g., an object, a state, a case, or a situation), and the output is the general category (or

categories) pertaining to the entity. We note that this characterization of the classification task as a map

3 from specific entities to general categories makes no commitments to the mechanism by which the

mapping is to be accomplished. Classification has been an active research issue in the knowledge-based

reasoning, pattern recognition, and connectionist paradigms, though the paradigms differ in the

mechanisms by which the task is performed.

A. Classification and Knowledge-Based Systems

The area of knowledge-based reasoning, though of relatively recent origin, is already a well

established paradigm in Al. The essential idea of the field is to capture in computer programs, explicitly
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and in symbolic form, the knowledge and problem solving methods of human experts for selected

domains and tasks. In fact, because of the central role of explicit domain knowledge of human experts,

the field is often called expert systems. This is not an appropriate place to discuss the general issues of

knowledge representation and problem solving in the area of knowledge-based systems, many of which

remain open and active research issues. There are many expert tasks that have been successfully

emulated by these systems; there are an even larger number of things that human experts do that are

beyond the current state of technology for construction of knowledge-based systems. Nevertheless,

when we examine the intrinsic nature of the tasks that knowledge-based systems perform, a surprising

fact emerges: many of them solve variants of problems which are intrinsically classificatory in nature. We

are not suggesting here that the authors of these programs recognized them as classification problems

and used methods appropriate to the classification task, but that independent of how they were solved the

problems have an intrinsically classificatory character. Let us consider some examples:

" The MYCIN system [35], in its diagnostic phase, has the task of classifying patient data onto

an infectious agent hierarchy, i.e., the diagnostic task is identification of an infectious agent

category, as specific as possible, that pertains to the patient data.

" The PROSPECTOR system [14] classifies a geological description as corresponding to one 3
or more mineral formation classes.

* The SACON System [31 classifies structural analysis problems into categories for each of

which a particular family of analytical methods is appropriate.

* The MDX system (6], [81, [20] explicitly views a significant portion of the diagnostic task as

classifying a complex symbolic description (the patient data) as an element, as specific as 3
possible, in a disease classification hierarchy.

We do not mean to imply that all problems are classification problems, or that they can be usefully 3
converted into such problems. R1 [27] and AIR-CYL [5], e.g., perform different versions of the object

synthesis problem, i.e., simple versions of the design problem. Dendral [4], Internist [30] and RED [22] 

are different systems all performing various versions of abductive assembly of composite explanatory

hypotheses. Chandrasekaran 7], [9], [10], has provided taxonomies of such geneic tasks, and has

identified classification as one of them. Recently, Clancey [12] has made a similar assessment of how

several knowledge-based systems perform classificatory problem solving.

I
I
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B. Classification and Pattern Recognition Models

The area of pattern recognition, now nearly thirty years old, represents another paradigm in Al.

The classification task has been intimately associated with pattern recognition models from the very

beginning of the field. In fact, in the early days of Al, the problem of recognition was formulated as a

problem of classification, in particular one of statistical classification of pattern vectors onto one of a finite

number of categories, each category characterized by some kind of probability distribution. Indeed, what

started out as a practically useful formulation became so dominant that there was a need for a paper such

as that by Kanal and Chandrasekaran [23] pointing out that classification is only one of the formulations

for the more general recognition problem. Even when newer techniques such as syntactic techniques

came into the field, the problem was still often formulated as a classification problem, this time into

grammatical categories.

C. Classification and Connectionist Networks

"Neural" modeling, which predates the early perceptron models and appears to be undergoing a

revival in its modem "connectionist" version, is still another paradigm in Al. The essential idea in this

area is to represent knowledge as numerical weights of connections between units in a network. A

variety of neural models, from linear threshold, digital networks [15], [32], to non-linear analogue

architectures [21], have been developed. These models typically deal with motor or perceptual

phenomena; neural networks that capture a range of complex, higher-level cognitive processes have yet

to be proposed. Although our remarks are intended to be more generally applicable, in this paper we will

confine our discussion only to linear threshold, digital networks in the connectionist mold in which the

emphasis is on the memory and learning aspects of reasoning.

The earlier connectionist networks, e.g., the perceptron model, were once viewed as devices for

practical visual pattern recognition, and since the problem of pattern recognition itself was viewed as that

of classification, perceptrons were really classificatory devices. The important role of classification is

evident even in the more recent connectionist architectures, in which "hidden" units separate the input

and the output units. Let us consider, as an example; the MBRtalk system [37], a connectionist scheme

for the task of word pronunciation. It uses a numerical relaxation technique for problem solving, and a

method for back propagation of corrective feedback during learning. The important point for our



purposes, however, is that MBRtalk performs its task by classifying character substrings of the input I
words onto phonemes. 5

II1. The Ubiquity of Classification

There are two things that are important to note from the above discussion: firstly, classification U
appears to be a rather ubiquitous information processing task, and secondly, classification has been an 3
important research issue in the various paradigms in Al. This suggests that classification is not an artifact

of any one point of view, but rather a "natural kind" of information processing task of considerable 3
cognitive significance. Indeed, classification appears to be a powerful human strategy for organizing

knowledge for comprehension and action. The human tendency to classify input entities is so strong that 3
we often classify without necessarily being consciously aware of it, and feel we have accomplished

something by merely naming entities as categories, even if we cannot do much about it. The use of 3
classification as a strategy for knowledge organization can be found in virtually every area of human

intellectual activity. In Biology, e.g., taxonomic classification has long been an important methodology for 3
organization of knowledge, and recently, mathematical techniques has been pressed into service for

providing better classification in this field [361. Some of the more recent controversies regarding 3
evolutionary biology, e.g., the traditional gradual evolutionary vs. the punctuated equilibrium theories, also

revolve around implications of various theories of biological classification. The periodic table of chemical 3
elements is another common classification structure in which first groups of elements and then the

specific elements are identified. 1
A. The Computational Power of Classification

A simple computational explanation can be given for the importance of classification as an

information processing strategy. We can think of a general task of an intelligent agent as performing 3
actions on the world for achieving certain goals, where the right action for accomplishing a specific goal

typically is a function of the relevant states of the world. In the medical domain, for example, we may I
view the general problem facing the physician as that of finding an appropriate therapeutic action for a

given set of symptoms that describes the state of a patient and is a subset of the set of all possible 1
symptoms. One way of mapping states of the world to actions on it might be to use a decision table that

relates various subsets of state variables to the action variable. However, if there are n state variables

vj, v?, ...,v,,. each of which may take on one of q values, then both the time and space complexities of

I
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mapping the states onto actions by table look-up are O(n. 4) [17]. Thus, the table look-up approach to

making decisions about actions on the world would be useful only for very small problems. In fact, the

cardinality of the relevant states of the world generally is very large, e.g., in the medical domain, the total

number of possible states of a patient is the cartesian product of the distinct values for each of the state

variables (symptoms, values from laboratory tests, other manifestations etc.). Thus, for complex, real

world problems such as medical problem solving the decision table is bound to be too large for

construction, storage, looking up, and modification.

The general problem of finding the right action may be solved more efficiently, however, if action

knowledge can be indexed, not by the states of the world, but by equivalence classes of states of the

world. A physician's therapeutic knowledge, e.g., may be indexed not directly by the detailed values of the

patient state variables, but by diseases, each of which can be thought of as defining an equivalence class

of patient state variables. What we are suggesting here is that a functional decomposition of mapping

states of the world to actions on it into first mapping the states onto their equivalence classes, and then

using these classes for indexing the right actions often results in substantial reduction in the

computational complexity of the problem sirice the number of equivalence classes typically is much

smaller than the total number of states. The classification task corresponds to the first component in this

decomposition, in which specific entities such as states of the world are mapped onto general categories

which represent their equivalence classes. Medical problem solving thus may be organized first as

classifying patient symptoms onto disease categories, i.e., diagnosis as classification, and then indexing

the therapeutic actions by the disease categories. It may not, of course, always be possible to

decompose the general problem of finding the right action in such a manner; however, whenever

possible, it is computationally advantageous to do so. The decomposition of mapping states of the world

to actions on it is illustrated by the JESSE system [18], which supports a simple version of political

decision making. JESSE first classifies the state variables describing a given situation onto situation

assessment categories, and then uses these categories to index appropriate policies for action from a

store of policy options.

B. Classlfcatory Categories

Classificatory categories represent the equivalence classes of entities that are input to the

classific ion task. Much of human thinking is organized around classification, both in terms of acquiring

new classificatory categories, and using existing categories to perform classifications, since classification
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provides a substantial computational advantage in solving problems. In knowledge-based systems, the

classificatory categories typically are labeled symbolically, and often correspond to concepts in the task

domain. In connectionist networks on the other hand, no labels are associated with the categories, and

the categories do not necessarily correspond directly with the domain concepts. The process of creating

useful classificatory categories by concept learning generally a a much harder process than using an

existing classification structure. Thus, in medicine, discovery of a disease, i.e., creation of a new

category, is a relatively major event while diagnosis is much more routine. How these classificatory

categories are created is an issue in research on learning and deep cognitive models [34]. In this paper

we will deal only with the process of assigning an entity to an existing category in a classification

structure.

IV. NUMERICAL APPROACHES TO CLASSIFICATION

So far we have discussed what is classification and why is it useful, but not how classification is

accomplished, i.e., we have presented the forms of input and output information for the classification task,

and have provided an explanation for the usefulness of classification as a strategy, but have not

presented any mechanism for performing the task. In the remainder of this paper we will review various

knowledge-based, pattern recognition, and connectionist approaches to classification. In this section we

will discuss numerical parameter setting approaches to classification. In the next section we will show

how the use of intermediate abstractions reduces the computational complexity of performing the

classification task, and discuss why symbols may be used to capture these abstractions. In section VI. we

will discuss the use of syntactic and structural relations between symbols for classification, and in section

VII. we will provide a detailed account of how complex symbolic structures that explicitly incorporate

domain knowledge may be used for classification.

A. Statistical Pattern Recognition

Most early pattern recognition models used the statistical approach to classification [13] in which

the object of unknown classification is represented as a multidimensional pattern vector. Each dimension

of the vector represents an attribute of the entity, and typically is represented as a numerical variable,

even though ordinals are some times used. The choice of the attributes of the entity is such that they

have the potential to distinguish between the categories, where each category is characterized by some

kind of probability distribution. In the task domain of medical diagnosis, e.g., if it is desired to distinguish
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between diseases D i and D, and the system designer has reason to believe that symptoms s I, s2 ...s,

carry useful information for this discrimination, then often careful statistical data gathering is possible such

that a discnrninant function of the variables s 1, s2...s n is a very accurate classifier. When the number of

dimensions is small, it is possible to design statistical classification systems that outperform human

performance, since human reasoning with the same number of variables may be less efficient in

information extraction. Despite the enormous intrinsic interest in the mathematical problem of designing

classification algorithms in the discriminant function framework, Kanal and Chandrasekaran 124] have

pointed out that the real computational power often comes from a careful choice of the attributes based

on a good knowledge of the domain, rather than from the specific design of the separation algorithm.

What happens when the dimensionality of the pattern vector becomes very large, or the number of

categories becomes large? When the number of categories increases, then in order to make more and

more distinctions, generally the number of measurements on the entity of interest, Le., the dimensionality

of the pattern vector, also needs to grow rapidly. The computational complexity of the algorithm to make

the discrimination grows even more rapidly than the increasing number of dimensions, and

correspondingly, the average performance, Le., the correct classification rate, deteriorates quite rapidly.

Sensitivity problems become quite severe, i.e., the required precision of the variables in the classification

algorithm becomes impractically high. Opacity problems result, i.e., it becomes increasingly hard to make

any kind of statement about what attributes are playing what role in the recognition process. Szolovits

and Pauker [40], discuss these and some of the other problems with probabilistic approaches to

classification.

B. The Perceptron Model

Roughly in parallel with the development of statistical approaches to classification in the pattern

recognition paradigm came the development of the early connectionist models of classification,

specifically, the perceptron model. The perceptron architecture [311, consists of a set of input units and

an output unit, each unit being a two-state, linear threshold digital device. Each unit in the input layer is

connected directly to the output unit, with some numerical weight associated with each such connection.

The inputs to the perceptron are points in an orthographic projection of the object to be classified, where

each input unit scans some points in the projection. The output is the truth value of some predicate such

as the predicate stating that the object, o., of unknown classification belongs to some known category,

Cv. The numerical weights associated with the connections in the network act as parameters of the
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network, and collectively represent the discriminant function for classification of the input object onto

different categories. The output of the network is computed by a linear combination of the evidence that

flows into the output unit via the connections. The perceptron architecture can be trained to "learn" the

discriminant function by appropriately adjusting the weights of the connections in the network. Feedback

on whether the network has reached the correct classificatory conclusion is provided by the trainer during

the learning sessions. It has been shown that if the input objects are linearly separable then the weights

of the connections will converge to the discriminant function that can correctly distinguish between the 3
objects in finite time.

When the number of categories and the number of points scanned on the objects to be classified

are small then the perceptron can be powerful classifier, at least for linearly separable objects. However, 

when these numbers get larger then the perceptron suffers from problems similar to those in the statistical

approaches to classification. As the number of categories increases, the number of points needed to be

scanned by the input units for learning the discriminant function increases, which results in a rapid

increase in the number of input units. The time complexity of learning the right weights for correct

classification grows even more rapidly, and correspondingly, the correct classification rate drops rapidly

for a fixed number of input units. The sensitivity problem worsens, i.e., even slight errors in the weights of 3
the connections may result in large changes in the output. The opacity problem, i.e., recognizing

specifically which weight is playing precisely what role in the classification process, hard in the perceptron

model in any case, becomes even harder. Minsky and Papert [281 discuss the computational properties

of the perceptron architecture, and point out some of the problems with it.

V. USE OF INTERMEDIATE ABSTRACTIONS IN CLASSIFICATION

The above discussion shows that while numerical parameter setting schemes may lead to powerful

classifiers for small problems, the complexity of the separation algorithm becomes impractically high as 3
the number of classificatory categories increases. The problem here lies not so much in the specific

choice of one discriminant function over another, but in the fact that these approaches seek to directly

map the input entity onto classificatory categories. Indeed, similar complexity problems arise for all

approaches that perform classification by directly mapping specific entities onto general categones. Let

us consider, as another example of such direct classification, the method of discrimination tree traversal

for medical diagnosis. Again, let the input be characterized by n state variables, s,, s .... s., each of

which can take on one of q values. The state variables are organized in a tree in which the top node

I
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corresponds to some state variable S, and has q branches coming out of it, one for each of the q possible

values that s, may take. The branches lead to q different nodes, each of which corresponds to some s.

and has q branches coming out of it. This organization is repeated until all the state variables have been

represented on the tree. Each of the q" branches coming out of the q"'f nodes at the nh level leads to

one of a finite number of disease categories, D, D2...., D,, The time and space complexities for

classification by discrimination tree traversal are given by 0(n) and O(q), respectively [171. Clearly, for

complex, real world problems, where the number of classificatory categories typically is large, the

proposition of directly mapping input entities onto classificatory categories is quite futile.

What, then, can be done when the number of classificatory categories is large? Let us consider; as

an example, the problem of automatic reading of texts in some language that consists of a large number

of words. Intuitively, one would think that first recognizing characters (or perhaps substrings of

characters) in the words, and then recognizing word themselves would be computationally more

attractive. The words (or perhaps word phrases) may be later used in understanding complete sentences

in the language. In this approach, instead of performir,,, -lassification by a direct mapping from the input

entity onto the categories, intermediate abstractions are first constructed, the entity of unknown

classification mapped onto these abstractions, which are then used as inputs to a higher-level

classification process. What we are suggesting here is a conceptual decomposition of the classification

process onto hierarchically organized intermediate abstractions. Such a conceptual decomposition

makes the classification process more efficient, as we will see a little later.

A. Signature Tables

In order to make the notion of conceptual decomposition of the classification process into

hierarchically organized intermediate abstractions more explicit, let us consider evaluation functions in

game playing, e.g., playing chess, as another example of classification. These functions usually yield a

number which is a measure of the "goodness" of the board. For most purposes, effective use of this

information can be made if the goodness is classified into one of a small number of categories. One of

the first forms proposed for the evaluation functions was a linear polynomial of attributes of the board,

where both the attributes and their weights were chosen in consultation with domain experts. Later, in

order to take into account interactions between the variables in the evaluation function, higher order

polynomials were proposed. This of course resulted in a fairly rapid increase in the complexity of the

function: if rt order interactions between the attributes were to be included, and the number of attributes
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is n, then the number of terms was of the order of r. Samuel's signature tables (331 provided a solution 3
which exemplifies the use intermediate abstractions in classification. For the purposes of our discussion,

Samuel's method can be described as follows:

1. Identify groups of attributes such that on the basis of domain knowledge there is reason to

believe that they contribute to an intermediate abstraction that can be used to construct the

desired classification, which in this case is a measure of the goodness of the board. The

number of attributes in each group is kept small, and the attributes in a group may have

some dependencies and interactions, in order to capture which polynomial terms were

included in the more traditional evaluation functions. The abstractions typically correspond I
to the concepts in the task domain, e.g., in chess, "defensibility of king" and "material

advantage" may be such intermediate concepts, each of which can be estimated by a small

subset of board attributes, while the final decision about the goodness of a board

configuration may be made in terms of these intermediate abstractions.

2. Find a method of classifying the desirability of these intermediate concepts into a small

number of categories from the values of the attributes in each group. The exact method for

this classification is not especially important here, though Samuel proposed a specific I

mechanism for it. The essence of his mechanism is a mapping from a multidimensional

vector, each component of which can only take on one of a small number of distinct values,

to a symbolic abstraction, which can also take on one of a small number of distinct values.

This mapping may be performed by a simple table look-up for example. 3
3. The outputs of the classifiers for each group can themselves be thought of as qualitative

attributes at the next level of abstraction. These attributes can be then grouped and

abstracted into higher level concepts, and the process repeated as many times as

necessary, with only a small number of attributes in a group at any level, until the top-level

concept is a classification of the "goodness" of the board.

Let n denote the total number of attributes at the lowest level of abstraction. Let us assume that the

number of attributes in each group at any level in the hierarchy of abstractions is smaller than some small, 3
constant, upper bound no (an assumption allowed in the signature table method), and further, that the

groups of attributes at any level are disjoint. Then both the time and space complexities are O(n) (17]. 3
Even if a few attributes at some level are used in more than one group of attributes, which sometimes is I

= I
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the case, and in which case the time complexity would be somewhat worse than linear in n, clearly, the

use of intermediate abstractions in classification yields substantial computational savings. Again, we are

not suggesting that such conceptual decomposition of the classification process into hierarchically

organized intermediate abstractions is always possible, but that, whenever possible, it is computationally

advantageous to do so.

B. Hidden Units in Connectionist Networks

The computational power of using intermediate abstractions is evident from the fact that a major

difference (perhaps the major difference) between modem connectionist networks and the perceptron

model, is that the former provide mechanisms for capturing intermediate abstractions. In the perceptron

model, since the input units were connected directly to the output unit, there was no representational

mechanism to capture intermediate abstractions, and classification was performed by directly mapping

input objects onto categories. Modern connectionist networks, on the other hand, contain hidden units

between the input and the output units, thus providing a mechanism for representing intermediate

abstractions as patterns of activity over the hidden units. The notion that the real role of the hidden units

is to somehow capture these abstractions becomes clear from the following observation: in most

connectionist schemes, such as the one for learning the past tenses of English language words [32], the

number of hidden units in the network is critical to its performance. When the number of hidden units is

too small then the problem is overconstrained and there is not enough structure to capture all the needed

abstractions, as a result of which the performance of the network deteroriates markedly; and when the

number of hidden units is too large then the problem is underconstrained and generalizations to the

abstractions are not possible, again resulting in a marked deteronation in the network performance. One

method of handling these sensitivity problems is to make the number of hidden units a parameter of the

architecture, and then experiment with the value of this parameter until the number of hidden units in the

network is just right.

The real computational power of modern connectionist networks is thus based on the use of

intermediate abstractions, which is an important reason for the resurgence of the connectionist paradigm

in Al more than a decade after Minsky and Papert had showed the inadequacies of the perceptron model.

Classification in connectionist architectures is accomplished by first mapping the input entity onto

classificatory abstractions, and then mapping these abstractions onto output categories. Moreover, as in

Samuel's work on signature tables for game playing programs, in modem connectionist networks the
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intermediate abstractions can be organized hierarchically. Indeed, for large scale connectionist networks,

where the number of classificatory categories and intermediate abstractions may be very large,

hierarchicalization of abstractions is an important method for dealing with the complexity of learning 3
classificatory categories and intermediate abstractions [2].

C. Symbols and Abstractions I

While the intermediate abstractions are represented as patterns of activity over the hidden units in 3
connectionist networks, there is simpler way of capturing these abstractions: by means of discrete

symbols. The representation of abstractions by symbols entails a trade off between the precision of i

numbers, with the concomitant problems of complexity, sensitivity, and opacity, for the simrlicity,

flexibility, and perspicuity of symbols. Often numbers are too precise for the task at hand, and robust I
symbolic hierarchical abstractions of the appropriate kind can capture almost all of the relevant

information. These advantages of representing abstractions by symbols have been demonstrated most I
recently by Lehnert [25]. She has constructed a connectionistically inspired system, called PRO, for the

task of word pronunciation, the same task that is performed by the entirely connectionist MBRtalk system. I
The main difference between the two approaches lies in that the PRO system uses symbols for capturing

intermediate abstractions in the classification of character substrings of words. While PRO appears to I
perform at least as well the MBRtalk system, it is simpler, smaller, more robust, and more perspicuous.

We are not suggesting that intermediate abstractions are entirely neutral to the underlying architecture of

implementation and representing abstractions symbolically is necessarily right for all tasks.

Chandrasekaran et al. [11] provide an analysis of the interaction between the abstractions needed for

problem solving and the architecture for their implementation, and suggest that connectionist schemes 3
may be well suited for simple forms of pattern matching and data retrieval, and for low-level parameter

leaming. However, for capturing higher level cognitive processes the advantages of using symbols for

representing abstractions are just too important.

VI. USE OF RELATIONS BETWEEN SYMBOLS FOR CLASSIFICATION 3
After about a decade of work on statistical classification in the pattern recognition paradigm, during

which work on classification in the perceptron and the symbolic paradigms was going on roughly in

parallel, Narasimhan [29] proposed a syntactic approach to pattern classification. The idea was to 3
describe categories of patterns not in terms of probability distributions in multidimensional spaces, nor in I

I
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3 terms of intermediate abstractions that can be captured symbolically, but in terms of relations between

symbols, much as grammatical categories are described in linguistic analysis. The idea of syntactic

5 pattern recognition is really a special case of the more general notion of structural relations for describing

classificatory categories. Thus, even when the idea of syntax is not appropriate --- it is doubtful that the

3 notion of a picture grammar really is as general for the domain of visual objects as it appears from a

purely formal perspective --- the notion of structural relations for characterizing categories may still be

3 applicable. We note that the ability to describe a category in terms of relations is a move towards

descriptions as the basis for category characterization.

I The major research directions in pattern recognition for capturing structural relations generally were

formal, i.e., they used some or the other mathematical system within which theorems about relationships

between categories may be provable regarding the classification performance. In fact, this was the major

3 reason for the original emphasis on syntactic methods, since there was a well developed theory of formal

grammars already available. This emphasis on formalisms led to two constraints: firstly, often an attempt

3 was made to force the available formalisms to fit the pattern recognition problem, generally with

unsatisfactory results; and secondly, because human classification performance was more heuristic in

3nature, restricted formalisms could capture the quality of human performance only fleetingly.

It is interesting to note that in connectionist schemes also classification is based on structural

Irelations between intermediate abstractions, even though the abstractions are represented by patterns of

activity over hidden units instead of being captured symbolically. The structural relations themselves are

Irepresented by connections of various types between the hidden units. Thus, in the MBRtalk system, the

connectionist scheme for the task of word pronunciation, classification of the input words is based on the

"syntactic relations" between the non-symbolic classificatory abstractions [37].

3With the introduction of syntactic/structural relations between intermediate abstractions the

progression of approaches to classification becomesI
numbers -- > abstractions (symbols) ---> relations.I

Now, if one is to use relations between symbolic attributes as the basis of category characterization, then

3why restrict oneself to syntactic relations? Why not bring the full power, to the extent possible or

necessary, the semantics of the classificatory categories? Asking this question prepares the way for theI
I
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next step in the progression of approaches to classification.

VII. KNOWLEDGE-BASED APPROACHES TO CLASSIFICATION 3
It is clear that each Al paradigm emphasizes different issues and poses them in a different

language, e.g., the pattern recognition paradigm raises issues such as those of discriminant functions, I
probability distributions, and error rates, while the connectionist paradigm raises issues such as those of

weights of connections, hidden units, and parameter learning. Similarly, the knowledge-based reasoning I
paradigm focuses on the issues of how to represent knowledge in symbolic form, how to organize and

access this knowledge, how to use this knowledge for solving problems, and how to control the problem I
solving process. The knowledge-based approaches to the classification task attempt to answer these

questions for classificatory problem solving. In this section, we will describe hierarchical classification [6], I
[201 as an example of knowledge-based approaches to classification, using the task domain of medical I
diagnosis for illustration.

A. Hierarchical Classification

In hierarchical classification, domain knowledge is organized as a hierarchical collection of

categories, each of which has knowledge that helps it determine its relevance to the input case of

unknown classification. A fragment of the classification hierarchy for medical diagnosis might be as

shown in Figure 1. Each category in the diagnostic classification hierarchy is a diagnostic concept of

potential relevance to the case at hand. More general concepts (e.g., LIVER) are higher in the hierarchy,

while more particular ones (e.g. HEPATITIS) are lower in the structure.

The total diagnostic knowledge is distributed over the conceptual categories in the hierarchy. Each I
concept has "how-to" knowledge for simple evidential reasoning in the form of several clusters of

diagnostic rules: confirmatory rules, exclusionary rules, and perhaps some recommendation rules.

These production rules are of the form: <pattern> -> <evidence>, e.g., "If the value of SGOT is high

then add n units of evidence in favor of cholestasis", where n is some small integer. The number of rules I
in any one cluster is kept small, and the evidence for confirmation and exclusion is suitably weighted and

combined to arrive at a conclusion to establish or reject the relevance of the category to the case, or

perhaps to suspend the decision making if there is not sufficient data to make a decision at the present

time. The recommendation rules are optimization devices whose discussion is not necessary for our

current purpose. What is important here is that when a concept in the classification hierarchy is properly 3
I
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Internist

I
Liver F Heart

Figure 1: Fragment of a diagnostic classification hierarchy

3 invoked, a small, body of knowledge relevant for decision making comes into play.

The control problem in hierarchical classification can be stated as "which conceptual category

should be considered at what point in the problem solving?". -in general, we would like to use domain

3 knowledge to achieve computational efficiency by considering only a subset of all categories. Similarly,

we would like to consider categores which are more promising ahead of others. The control regime

3 natural to hierarchical classification is top-down and can be characterized as estabish-refine. Starting

from the root node, each concept first uses its knowledge to establish or reject itself for relevance to the

3 entity to be classified. If it succeeds in establishing itself, then it attempts refinement by sendng

messages to its subconcepts who repeat the establish-refine process. If, on the other hand, the concept

I rejects itself, then all its subconcepts are automatically ruled out leading to a pruning of the hierarchy.

The idea is to establish a conceptual category, as specific as possible, that is relevant to the input entity.

3Let us consider the case of a patient suffering from hepatitis as an example. Given data about this

patient, first INTERNIST would establish that there is in fact a disease, and send messages to LIVER and

3 HEART for refinement as shown in Figure 1. Then LIVER would establish that the disease is a liver

disease, and send messages to HEPATITIS and JAUNDICE for refinement, while HEART would reject

3the hypothesis that the patient is suffering from a heart disease. Next, HEPATITIS would establish the

disease as hepatitis while JAUNDICE would rule out the hypothesis that the disease is jaundice. Thus

3 each concept makes decisions about its relevance to the patient data in the context of the decisions

made by its superconcepts. Sticklen et. a/. 1381 discuss the control issues in classificatory diagnosis inI
I
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detail.

The problem solving in this approach to classification is distibuted. The conceptual structures in

the hierarchy are not a static collection of knowledge; instead, they are active problem-solving agents.

Each of them has knowledge only about establishing or rejecting the relevance of a conceptual category,

and communicates with others by passing messages. The entire ensemble of these semi-autonomous

problem solving agents cooperates to perform the classification task. Goel et al. [191 have shown how the

concurrency inherent in hierarchical classification can exploited on a distributed memory, message

passing architecture.

We note that hard probability numbers are nowhere used in diagnosis by hierarchical classification;

what each problem solving agent computes are qualitative belief measures: "definitely present", "likely

present",..."definitely absent". Moreover, the computation of the qualitative values is localized rather than

based on some global probability calculus; each agent computes the qualitative measure for its concept

using only its own knowledge but in the context of its superconcepts. Medical diagnosis appears to be an

instance of the class of problems in which a numerical approaches, such as statistical pattern recognition,

would have significant computational problems. In addition, it would pose considerable difficulty in

acquiring knowledge in terms of probability distributions, at least for problems of large degree of

complexity, while knowledge in the form required by hierarchical classification is often directly available

from domain experts.

At our research laboratory we have used the hierarchical classification methodology to construct

MDX [6], [81, [201, a medical diagnostic system for a class of liver diseases in internal medicine. The

number of state variablts, such as symptoms, signs, and laboratory values, describing a typical case that

MDX can handle is in the hundreds, and the number of distinct conceptual categories in its diagnostic

hierarchy is also close to hundred. MDX is a complex system that has been tested on a number of real

world cases with a high match between its conclusions and that of human specialists. Recently, a more I
sophisticated version of the MDX system, called MDX2 [39J, has been constructed in our laboratory.

Several concerns ought to be noted before using the hierarchical classification methodology to 3
build knowledge-based classificatory problem solvers:

1. Not all classification problems are necessarily solved as hierarchical classification problems. i

Hierarchical classification requires that concepts in the task domain be available at several II'I
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different levels of abstraction. While there are many real world domains that do satisfy this

condition, not every domain need have this characteristic. There are other systems that

jperform classification, but without using the hierarchical point of view [1]. However, it may

be better to use hierarchical classification whenever possible for reasons of computational

efficiency. Let rn be the number of categories at the leaf nodes of the classification

hierarchy. Since the desired classification generally is one of these m categories, the time

complexity of non-hierarchical classification is 0(m.t), where t is the time complexity of

finding the relevance of a single category to the entity of unknown classification. If the

number of state variables is n, and single category classification is performed using the

signature table approach discussed earlier, then t is O(n). In case of hierarchical

classification, in the best case when all but one branch at each node in the hierarchy are

ruled out, the time complexity is 0(Iog(m).t); and in the worst case, when every branch at

each node is traversed, the time complexity is O(m.t). Goel et al. [173 provide details of the

complexity calculations for classificatory reasoning. It is clear, however, that even in the

worst case, the complexity of hierarchical classification is no worse than the complexity of

non-hierarchical classification, and the choice between them really depends on whether it is

possible to construct a classification hierarchy in the task domain of interest.

2. The entity to be classified may have several leaf node categories simultaneously relevant to

it, rather than just one leaf node category. In medical diagnosis, e.g., a patient may have

both "cirrhosis" and "portal hypertension" (which in the domain of liver diseases might be

two of leaf nodes in the classification hierarchy), and in addition, the two diseases may be

causally related. Such a situation is not uncommon in other domains as well, e.g., in

character recognition, the pattern to be classified may consist of be two characters touching

each other rather than one single character. The hierarchical classification framework

clearly can deal with such situations.

3. The classification hierarchy may be a "tangled" hierarchy, i.e. some concepts in the

hierarchy may have more than one superconcept. Such a hierarchy may be "untangled" in

the hierarchical classification framework by storing a copy of the concept in each tangled

branch. This introduces redundancy in the storage of domain knowledge by the

classification agent.
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4. In general, multiple classification hierarchies may exist in the task domain, e.g., in medical

diagnosis there may be one classification hierarchy for infectious diseases, and another for

liver diseases. In addition, the same category may exist in more than classification

hierarchy, e.g., viral hepatitis is a conceptual category in the infectious disease hierarchy as

well as in the liver disease hierarchy. This involves coordination among the classifications

reached by the different classification modules. The MDX2 system contains severai

classification hierarchies, and provides a mechanism for handling such interactions between

them.

5. The problem task may require not only classification of entities onto categories, but other

problem solving types as well, e.g., the diagnostic task often is functionally decomposable

into the generic tasks of knowledge-directed data abstraction, and abductive assermbly of

explanatory hypotheses in addition to that of classification [9], [10]. This involves

coordinating the actions of various problem solving modules performing different generic

tasks and cooperatively solving diagnostic problem. The MDX system [8] contained

modules for hierarchical classification and knowledge-directed data abstraction and

provided mechanisms for communication between them. The MDX2 system [391 contains

modules for knowledge-directed data abstraction and abductive assembly of explanatory

hypotheses in addition to several hierarchical classification modules, and provides

mechanisms for handling interactions between them.

6. The conceptual structure mechanism used in hierarchical classification is only one of the

several possible methods for determining the relevance of a specific category to the entity

of unknown classification. In the DART system [161, e.g., the decision about the match of

the category to the input data is done by using theorem-proving techniques. Alternatively,

the classification category agents may make their decisions based on a causal knowledge

of the domain [34]. The MDX2 systems uses such causal knowledge to derive the

conceptual structure needed for category classification. In simple cases, it may be possible I
to use statistical pattern recognition methods for this purpose. Connectionist networks may

be especially appropriate for the pattern matching operations required in simple evidential

reasoning [111. The point is that how the hypotheses are evaluated is somewhat

independent of the flow of control for the classificatory task as such, even though for

complex problems, a rich knowledge structure will be called for to make the decision about 3

I
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how well a specific category matches the data for the case in hand.

VIII. CONCLUSIONS

We have noted that classification appears to be an ubiquitous information processing task

underlying human thought processes. The reason for this is the significant computational advantages

that arise from indexing stored action knowledge over equivalence classes of the states of the world

rather than over the states of the world themselves. We have taken the reader through a progression of

approaches to classification:

numbers ---> abstractions (symbols) ---> relations -- > knowledge structures.

Each stage in this progression gave added power in controlling computational complexity by matching the

structure of the classifier to that of the task. At the knowledge level, the computational power comes from

task-specific control regimes controlling access to appropriate chunks of domain knowledge. We

motivated the discussion by using classificatory diagnosis as an example in various places, but the ideas

are applicable more generally.

This paper can be viewed as a bridge-building activity between three research paradigms in Al:

knowledge-based reasoning, pattern recognition, and connectionism. Classification has been a major

concern in pattern recognition, and an important task performed by most knowledge-based systems as

well as by many connectionist networks. Thus, the classification task provides a good place to understand

some of the distinctions between the three research paradigms. For well-constrained classification

problems with relatively small number of categories, the numerical functions and measures used in

pattern recognition models and connectionist networks typically can provide powerful classifiers which

often outperform human experts by extracting the last trace of information that discrete symbolic

processes can only approximate. On the other hand for complex problems involving many variables and

categories the symbolic knowledge-based approach trades off the optimality of the best functions in

pattern recognition and in connectionism for computational tractability and better matching with human

knowledge in the task domain. Our own research lies in the knowledge-based reasoning paradigm. Our

approach has been to identify generic tasks other than that of classification, but with the similar

characteristic of being a building block for intelligence. Chandrasekaran [7], [9], [101 provides an account

of the repertoire of generic tasks that we have identified so far.
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Many of the points made in this paper transcend the particular task of classification. In that sense, 3
this paper can be thought of as an attempt to show the need for the emergence of symbolic structures for

complex information processing transformations on representations. Cybernetics sho;'ed the power and 3
usefulness of feedback and stability in understanding many control and communication problems.

However, classical control theory is expressed in terms of numerical measures and functions. Learning U
and control in this framework involves parameter modification and signal propagation. The space over

which parametric changes and numerical signals can provide control is quite limited. Symbolic models of I
the world provide greater leverage for change and control and still keep computational costs under

control. Thus in biological information processing, symbolization seems to have occurred very early in

evolution; Lettvin et al. (26] provide an account of how the early visual processing of the frog is symbolic.

Once symbols were available as the language in which to perform information processing, thought

eventually evolved into more and more complex symbol structures. Thus the discussion in this paper can

be viewed as an intuitive account of the emergence and power of symbolic structures for complex

information processing activities. 3
I
I
I
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I Data Validation During Diagnosis,
A Step Beyond Traditional3 Sensor Validation.

It. Chandrasekarun and W.F. Punch 1111
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Abstract For example, to measure the temperature of a
chemical reaction, multiple temperature sensors

A well known problem in diagnosis is the difficulty of could be used in the reactor and their statistical

providing correct diagnostic conclusions in light average gien as the overall temperature value.

incorrect or missing data. Traditional approaches to 2. Providing different kinds of sensors to monitor a
solving this problem, as typified in the domains of datum. This situation provides the same redundancy
various complex mechanical systems, validate data by as (1) as well as minimizing the possibility of some

using various kinds of redundancy in sensor hardware, kinds of common fault problems. That is, :ertain
While such techniquel are useful, we propose that events that inactivate one sensor type will not affect
another level of redundancy exists beyond the hardware sensors of a different type. Continuing with the
level, the redundancy provided by expectations derived example of (1) above, half of the sensors might be
during diagnosis. That is, in the process of exploring thermocouples while the other half might be
the space of possible malfunctions, initial data and mechanical temperature sensors.
intermediate conclusions set up expectations of the
characteristics of the final answer. These expectations 3. Using snsor in several different locations to infer

then provide a basis for judging the validity of the a datum value. In this situation, data values are

derived answer.' We will show bow such expectation- monitored both directly and inferred from other

based data validation is a natural part of diagnosis as system data based on well- established

se thierarchical classification expert systems. relationships. For example, while the temperature
performed by hof a closed vessel may be directly monitored, it can

be inferred from the measurement of the pressure

1. Introduction using the PV= n, equation.

Diagnosis is the process of mapping system observations into Such hardware redundancy allows some data validation, but

zero or more possible malfunctions of the system's components. some limitations for this approach do exist.

M..t of the work in Al in diagnosis assumes the observations 1. The expense of installing and maintaining multiple
given to an expert system are reliable. However, in real-world sensors for each important datum greatly increases
situations, data is often unreliable and real-world diagnostic the castof the mechanical system.
systems must be capable of taking this into account just as the 2. Common fault failures still happen, despite cautions
human expert must. In this paper, we will discuss a knowledge- mentioned above, especially as the result of severe
based approach to validation that relies on diagnostic expectations operation malfunctions.
derived from the diagnostic process itself to identify possible
unreliable data points. 3. Human operators and engineers resolve many such

Present-day aids for human experts performing diagnosis diagnostic problems despite incorrect and even
sttempt to validate data before diagnosis begins. In the domains absent data. In other words, human experts are
of various complex mechanical systems (Nuclear Power Plants, more tolerant of bad data whether it has been
Chemical Manufacturing Plants, etc.), such aid is based on the validated or not.
concept of hardware redundancy of sensors. Each important Therefore, while hardware k idundancy does solve part of the
system datum (pressure, temperature etc.) is monitored with a problem, more sophisticated techniques are required to complete
number of b irdware sensors providing a redundancy of the job.
information from which a composite, more reliable value is The following simple example will help in examining point (3)
extracted. Based on this hardware redundancy, a number of and other ideas 2 . Consider the mechanical system diagrammed
techniques were developed to validate a datum!s value: in Figure 1 with data values indicated in Figure 2. It is a closed

1. Providing multiple sensors of the same kind to vessel with two subsystems, a cooling system and a pressure relief
monitor a datum. Loss of one sensor therefore does system. The vessel is a reactor which contains some process
not preclude data gathering mid any disagremnts (nuclear fission, chemical reactions, etc.) that produces both heat
among the sensors can be resolved statistically, and pressure. The data values of Figure 2 indicate that the

tmprature of the reactor vessel is above acceptable limits.

IWe gratefully acknowledge the support of grants from the Air 2 Note that the Ideas presented here have been used on more
Force Office of Scientific Research, AFOSR- 82-0255, nd the complicated real-world systems[5.71. This example has been
National Science Foundation, CPS -89400840 condensed from them for expository clarity.
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Assume for the example that two possible causes of the high
reactor temperature exist: either the cooling system has failed or Variable Sttus
the pressure relief system has failed and the added heat has

overpowered the functioning cooling system. Given the sensor Temperature High

readings, what would be the diagnostic cnnclusion? The data Pressure Normal
conflict is the normal pressure 4nd cooling system readings and Condenser All sensors
the abnormal pressure relief i.ystem reading,, The failure of the Normal
pressure relief system is plausible, data indicates its failure aind norl
no other system failure, but such a failure expects the pressure to Flow System Normal
be high! The step to take is to assume that both the pressure relief
system failed and the pressure sensor is incorrecL Relief Valve Sensors indicate

The process shown above demonstrates data validation at a Malfunction

higher level than that of simple sensor hardware validation. In Valve Control All sensors
the example, the pressure system has failed despite the lack of a System Normal

high pressure datum. However. there is other strong evidence3

that the pressure system has indeed failed. The human reasoner Figure 2: Sensor Values for the Example
expects the pressure datum to be high since the preponderance of
other data indicate a malfunction. That is, the human reasoner in redundancy of diagnostic expectation is a natural extension to the

pursuing likely diagnostic conclusions discovers a plausible hierarchical classification diagnostic model
diagnostic conclusion that meets all but (in this case) one
expectation. The important points to note are that:

1. A diagnostic conclusion can and should be made 2. Diagnosis as a Hierarchical Classification Task
based on the preponderance of other evidence. Significant interest has recently been directed towards

understanding problem solving behaviors (diagnosis, planning,
2. The datum value that does not meet expectation design) from the viewpoint of Information Processing Strate0es.

should be questioned and further investigation of its For example, Clancey (41 has shown that MYCIN is a species of
true value made. classification problem solving activity. Earlier, in our work on

Note that this process involves redundancy, not at the level of MDX (21, we explicitly identified hierarchical classifwcation as a
sensor hardware, but at the level of diagnostic expecttion. This is strategy useful for some classes of diagnostic problem solving.
a redundancy of information that allows questioning (and Diagnosis as a classification problem solving task is a
subsequent validation) of data based on multiple expectations of matching of the data of the problem against a set of malfwuctions
diagnostic conclusions. If a conclusion Is likely, but not all of its (La., diseases, system failures, etc). If the present data are
expectations are met, than those nmew questionable values are clasifid as a known malfunction, then the diagnosis is
Investigated by more computationally expmsive techniques. completed. Note that this in a compiled approach to diagnosis

Such expectations can be the result of ne of a number of since It requires that the possible malfunctions and knowledge
processes. Deep models can provide hafrmation on expecte data about how to establish those malfunctions be pro-enumerated.
patterns for any diagnostic conclusion. From this Information, Other less well defined problems require a deeper model that rely
judgments on the reliability of any of the actual data values can on first principles (physics. chemistry, etc.) and an intimate
be made. Information provided fomn such deep models can be understanding of the system at hand4 . The rest of this section
incorporated into compiled structures that can else provide discusses the basic ideas behind hierarchical classification (See
information on data reliability. Finally, the expert himself con [6, 21 for details).
provide the information on data reliability to the diagnosis The malfunctions (diseases, failures) possible in the system
system based on his expert judgment of the particular diagnostic am organized hierarchically. Typically, this hierarchy reflects a
process, in effect acting as the deep model for the system, systemsub-system or functiowsub-function relationship

between the malfunctionsl5 . Continuing with the example system

in Figure 1, the malfunction hierarchy for the reactor system is
shown in Figure 3. Each nods in the malfunction hierarchy

rrepresents the hypothesis that some particular malfunction has
low- occurred. Note that the nodes located in the upper levels of the

hierarchy (Pressure System Failure, Cooling System Failure)

represent more abstract malfunction hypotheses then those lower
in the hierarchy (Relief Valve Failure, Condenser Failure).
Further note that the sub nodes of any node are more particular
kinds of the super node. For example, a Relief Value Failure is a
particular kind of Pressure System Failure. Therefore, as one
traverses the hierarchy in a top down fashion, one examines more
detailed hypotheses about what malfunction has occurred in the

Figure L- An Example Mechanical System system.

In this paper we will discuss compiled diagnostic systems that
deal with conflicting datum at the level of diagnostic expectation
indicated above. These are diagnostic systems that make
conclusions based on diagnostic knowledge and some judgment on 4Space limits this paper to the compiled system issues, see

the validity of the data provided. In particular, we will show how reference [9 for a detailed discussion of the deep model issues and
computational strategies.

lThough the simple examples of this paper use only a single
3 1n the example, this evidence is that there is a failure of the hierarchy, other work( 101 recognizes that multiple hierarchies

relief valve system which is part of the pressure system may be required to properly represent all system malfunctions.



Fach node in the hiorarchy has knuwlodgo ubuut the
conditions under which the malfunction hypothesis it represents
is plausible. Each node of the malfunction hierarchy is therefore If J, .. £..i ..

a small expert system that evaluates whether the malfunction 2, WhffSth.Ti.pe;is eb.e.th.C..,gd...r

hypothesis it represents is present given the data. W hile there 3P whbis . u p..,.e..l..C.l %e40.,o.1!

are a number of ways this could he accomplished, conceptually
what is required is pattern - matching hased on data feOirns. i _ V.I-

Each node contains - set uf features that are compared against OR. oHih--,) ? 3

the data. The results of this comparison indicate the likelihood of
that particular nalfunction being present. The pattern matching IoR High L.) ? 2

structure of a nbde in the CSRL language I I I is called a knowledge ...
group. The knowledge groups compare relevant features against
the data and yield a symbolic likelihood.

sys-e Figure 4: A Knowledge Group from Cooling System Failure

continues until there are no more nodes to examine. In this way,
the most specific malfunctions that can be confirmed are given as

PIRes.., system c.6 System the diagnostic conclusion8 .

Failure rile,

3. Data Validation
Two important methods are available for validating data in

NOWV.t. V61.0 C..iu C.ud.uw Feed Sys.,. conjunction with hierarchical classification. First. it is possible
1eUr.. FAIIIur Fan Ftail.r to establish a malfunction based on a preponderance of other

___evidence. If the node can establish but not all the data it expects
is present, the data not meeting expectation is subject to question.
In the original example, the Pressure Relief System Failure

Figurel Hierarchy ofimalfunctions from Figure I established despite a normal pressure reading based on a
.preponderance or other evidence.

Consider the knowledge group depicted in Figure 4 taken from Secondly, intermediate diagnostic conclusions from other
the Cooling System Failure node of our example. The first section nodes provide a context to evaluate datL If the Pressure System

represents three queries about a datum value6. Each column of Failure does establish, its subs can expect the pressure reading to
the table underneath represents a possible answer to each be abnormal. If it is not, they can also question the pressure
question (column I to question 1, etc.). The match value assigned reading.
to the knowledge group is based on the value located at the end of In the remainder of this section, we will discuss the following

each row 7 . In our example when the answer to question 1 is True, aspects of a data validation system
the answer to question 2 is either High oi Low and regardless of 1. How data is questioned based on diagnostic
the answer to question 3, row 1 assigns a value of 3 to the expectations.
knowledge group. The rows of the table are evaluated in order
until either a row of queries matches or no row matches and a 2. The various methodologies available that could

default value is assigned. Thus, when the data pattern of row I resolve the questionable data.
exists, the knowledge group (and thus the malfunction) is 3. How the normal control flow of diagnostic problem
established at a high level of confidence. solving is affected.

Finally, the control strategy of a hierarchical classifier is
termed estabish-refine. In this strategy, each node is asked to
establish how likely the malfunction hypothesis it represents is
given the data. The node, using knowledge groups, determines an .. iuestoning a Datum Value
overall measure of likelihood. If the node establishes, i.e,. the
malfunction is judged likely, then each sub of that node are asked set some expectations, using local knowledge or the context of

to try and establish themselves. If a node is found to be unlikely, other nodes. Second, use those expectations to flag some

then that node is ruled-out and none its subs are evaluated. particular data value as questionable.

Consider the example using the data from Figure 2 ad the The expectations of a malfunction are embodied in the

hierarchy of Figure 3. The top node is established since the knowledge group. The knowledge group mechanism was designed

temperature is high. Each of the subnodes is then asked to to give a rating of pattern fit to data. If the fit is not as expected.

establish. Cooling System Failure rules out and none of its those data values not meeting expectations are identified as

subnodes are examined. Pressura Relief Failure establishes and questionable. In the example of Presure Relief Valve Failure.

its subs are asked to try and establish themselves. This proem evidence exists that the valve has failed even though the pressure
is normal. The lack of fit between data and pattern allow the

_pressure value to be identified as questionable. Diagnosis
continues despite apparent data conflict since enough evidence

6 1n the present CSRL implementation, these values are fetched exists for establishing the malfunction hypothesis.
from a database, though other means may be used, such as calls to
deep models, simulations, etc.

71n this case, the values assigned are on a discrete scale from 8 Note that if multiple conclusions are reached, then either

-3 to 3, -3 representing ruled-out and 3 representing multiple independent malfunctions have occurred or multiple

confirmed. dependent malfunctions must be resolved into a smaller set (8I.



I
Furthermore. the expectations of previous nodes create a node are subdi~vided among the know ledge groups that need them.

context of expectation for the node currently being examined. That is, even within the node, the data is further partitioned to

Consider the example hierarchy of Figure 3. In order to establish only those knowledge groups that will use that data The
the malfunction hypothesis Relief Value Failure, the malfunction knowledge engineer is therefore presented with a much simpler
hypothesis Pressure System Failure must have established. In task. Only those combinations of a few data itemsq thnt prerent a
the context of considering the Valve Failure, sone expectations missed expectation need be encoded into the diagnustic s.teii
were created bused on the establishment of the Pressure System I
Failure nole and other ancestors. Since thes expectations
always exist when considering Valve Failure, i.e., you can't get to 3.3. Resolving the Values of Quoastunn , lh It lati
Valve Failure without establishing Pressure Systen Failure, A number of methods are available fur reoluti...r
they can be coded Into the Valve Failure Node. questionable data. The system may examine the state of tie

How expectations are used for the Pressure Relief System nodes in the diagnostic hierarchy to sea if any other nodes were
Failure node is shown in Figure 5. A modification is made to the satisfied or unsatisfied with the datum value in question. If many
standard knowledge group of Figure 4 that allows the expert to other nodes also questioned the same datum, increased evidence
indicate beth a match value for the group and a set of data that do, exists that the value is incorrect. In contrast, if no other node who 3
not meet the expectations established at this stage of the problem used it questioned the value, evidence for its incorrectness is
solving. Thus, Pressure Relief Failure establishes (based on decreased and the validity of the knowledge group that originally
other data features) despite the lack of a change of pressure, questioned the value is suspect. This is a redundancy ot usage byHowever, in establishing the node, one should question why the the nodes in the diagnotic hierarchy.pressure did not change. This is done by placing the pressure If a node indicates a data conflict that prevents it from

value in the rightmost column of the matching row. If that row is establishing, that node can examine its subnodes to see if they
matched, then the match value is returned but the indicated data have any expectations that resolve the conflict. Using Figure 3 as
value is placed in a list of questionable data values which will be an example, assume that Cooling System Failure cannot establish
examined later. If the match value is high enough, the node because it requires that a temperature datum be high. The 3
establishes despite the existence of conflicting data. That is, if system could examine the aubnodes of Cooling System Failure.
there is enough evidence to show a malfunction despite a namely Feed System Failure or Condenser Failure, to see if they
conflicting value, the problem solving may continue. However, it can establish independent of the temperature reading. If Feed
may be the case that the value being questioned Is of vital System Failure has enough data evidence to establish anywny,importance to establishing the node. The match value will reflect then Its expectations might roslva the ise of the temperature

this, the node will not establish, but the data will still be placed on reading. If It too expected a high temperature that does not exist.
the questionable data list. After an initial run of the problem there is increased evidence that the temperature reading is
solver, the questionable data list will consist of data values that incorrect. If it did not have any expectations about the
did not mst the expectations of some node. temperature reading, then the knowledge found in the Cooling 3

System Failure could be questionable. This is a redundancy of
expectation.

9) Is M. Pmt.... Aloe aln The diagnostic system could contain more involved or detailed
2) WIs-h P...trnlhr,, e Aism dsl hardware checks then would be feasible to perform on all sensors

as the data becomes available. General methods are invoked for a U
11pltow xparticular kind of sensor (thermocouples vs. mechanical thermal

I s I v-a.. vs," sensors) that are too computationally ntensive/expensive to run
rl,. (OR Wih L,, m I a i'm.. all the time on incoming data. These procedures are run if there is

Tres (t H Ler I a hevidence that their use.would pay off. Such evidence is provided 3
"i' ___IO ___l___ .2......,- . by a data conflict discovered by the diagnostic system. While

4 00 040 900 .these methods do not depend directly on information provided by
the problem solving state (as the above methods do), they are only
used when indicated by the diagnostic system. This is a hardware

- - -rdancy of need.

Figure & Knowledge Group Modified for Data Validation 3.4. Control Issues
While sections 3.1 and 3.3 have discussed discovering and U

resolving possibly invalid data, this section addresses the issues U
3.2. Questions Regarding Combinatorial of control flow changes to the normal establish- refine strategy.

Explosion 1.What happens to data whose values have been

The knowledge engineer is responsible for providing the node proven to be either incorrect or unresolved? If found

with both feature matching data and datum values that do not to be Incorrect, the value in the data base must be
meet expectations of the malfunction hypothesis at that point. modified. Le., the central data base value modified.
This, as mentioned previously, is a compiled approach to data to indicate the change. If unresolved, it must be

validation. It may appear that such a compilation of possibilities flagged as such in hopes of being resolved later.

will result in a combinatorial explosion. However, not all possible 2. If incorrect data has been found, then It is possible I
combinations of sensor readinp need be encoded; only tho5e that the problem solver made smaw mistakes in its
situations which the expert deems reasonable or necessary need diagnosis. It may be necessary to re-run the
be placed In the knowledge groups. More importantly, in our hierarchy to se if the diagnostic conclusions
approach to use of knowledge groups, a hierarchy of abstractions change. Furthermore, any unresolved data may be I
is used to go from the. data to the claselficatory conclusion 131. resolved as a result of the now information.
Thus, the set of data elements needed for any node In the
hierarchy Is limited to only thoe relevant fur the malfunction 3. The basic control strategy would then look like the
hypothesis it represents. Furthermore, the data elements of each following cycle: 3

I
I



a. Run the Hierarchy, finding questionable 3. Such a system integrates well with existing systems
values, that presently rely solely on hardware redundancy

b. Run resolution techniques of section 3.3 to by using those values as data for both diagnosis and
resolve the values if possible. a higher level of data validation.

the data base with anv changes. 4. The programming by a user of such a system is
facilitated by existing tools fCSRLU thdt need onk

This cycle continues until -either no data is minor modifications.
questioned or the user sees an answer that is
satisfactory.

4. Other control strategies.are also available. The Acknowledgments
resolution techniques of section 3.3 could be run as
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Integrating Model-based Reasoning and Case-based Reasoning
for Design Problem Solving

Ashok (;oel and B. Chandrasekaran

Laboratory for Artificial Intelligence Research
Department of Computer and Information Science

The Ohio State University

Abstract
Design is a complex information processing activity. What problem solving

strategy is appropriate for the design of a specific artifact depends on what knowledge is

available to the designer. One form in which design knowledge is often available is that

of previously designed artifacts. For this reason, case-based reasoning is an attractive

approach to design problem solving. A main issue in case-based design is how to adapt

the structure of an existing design to achieve a new device functionality. This capability

requires a causal understanding of how the structure of a device enables the

accomplishment of its function. Such a causal understanding can often be expressed as a

functional model of the device that specifies the designer's knowledge about the role of

the various components and their relations in the functioning of the device. The

Functional Representation scheme is a method for organizing and representing an agent's

causal understanding of devices. In this scheme, the agent's understanding of the

functioning of a device is expressed as behaviours that compose the functions of its

structural components into device functions. In this paper, we illustrate how this

organization of knowledge may enable a designer to identify the portions of the device

structure that need to be modified to achieve a new functionality, and to reason about the

effects of these structural changes. The integration of this capability with that of

indexing, storing, and retrieving previous design cases can provide a powerful strategy

for efficiently solving complex design problems.



I. Design Problem Solving
Design in general is a very complex information processing activity. Moreover.

design covers a very wide variety of phenomena: planning a day's work, composing a

computer program, and constructing a scientific theory can all be viewed as instances of

design problem solving. In order to provide some focus to the present discussion. let us

restrict its scope to the design of engineering artifacts that accomplish some explicitly

stated goals.

The information processing task of design can be abstractly characterized as a

specification of a set of components and their relations that meet a set of constraints [4].

Some of the input constraints may represent the desired functions of the artifact. some
may pertain to the components and their relations, while others may refer to the design

process itself. The components and their relations specified in the output comprise the

structure of the artifact that enables the accomplishment of the intended functions. This

structure is built out of primitive components (e.g. a resistor) and primitive relations (e.g.

serial connection) available to the designer as part of his domain knowledge. Since the

number of primitive components and relations in a given domain can be very large,

synthesizing a structure that enables the achievement of a given function can often be
open-ended and computationally intractable.

Perhaps because design is so challenging, it has attracted substantial attention in

Artificial Intelligence research. A number of mechanisms for design problem solving
have been proposed in the literature: e.g., plan synthesis using abstract objects and

operators (10], production rule architectures for configuration problems [9], relaxation
techniques for design by multiple constraint satisfaction [8], etc. Although each of these

techniques has relative advantages and drawbacks, none of them is right or wrong per se:

for simple design problems, almost any of them is likely to work; for complex problems,
none of them by itself may succeed.

An important issue in design problem solving is how well the form in which

knowledge is available to the designer matches the form in which knowledge is needed to

perform a given design task computationally efficiently. For instance, if for a specific

routine design task, the designer knows of precompiled skeletal design plans which

enable him to recuaively decompose the design task into subtasks upto the level of

choosing primitive components, then the design task can be efficiently performed by plan

instantiation and refinement [1,5].



2. Case-based Design
One form in which design knowledge is often (typically?) available to a designer is

that of previously designed artifacts. If the designer is charged with the task of designing
a device that accomplishes a specific function and has previously come across a device
that achieved a similar function, then he may design the new device by suitably adapting
the known design of the existing device [14].

In the canonical example of this approach [7,111, the designs of artifacts known to
the designer are stored in memory as design cases. A design case may be indexed by
using complex multiple indices that may specify the functions of the artifact and the
prominent features of its design. When the designer is supplied with the specifications of
a new device, the design case that best matches the specifications is retrieved, and
modified to meet the desired specifications. The generated design can then be tested, for
instance, by qualitative simulation. If the test is unsuccessful, then the design can be
further modified; and if it is successful, then it is stored as another design case. In this
way, the designer may acquire new design knowledge. Moreover, when storing a new
design case in memory, the designer may generalize across index categories leading to
further operationalization of his design knowledge.

Case-based reasoning is an attractive approach to design problem solving because it
makes use of experiential knowledge, and can provide mechanisms for acquisition and
operationalization of design knowledge. In general, case-based design is likely to be
computationally more efficient than approaches that perform design from -first
principles" for every new problem.

A main issue in the case-based approach to design is how to adapt the structure of
an existing design to achieve a new functionality. This capability requires a causal
understanding of how the structure of a device enables the accomplishment of its
function. Such a causal understanding can often be expressed as a functional model of
the device that specifies the designer's dynamic knowledge about the role of the various
components and their relations in the functioning of the device. It is this causal
understanding that enables a designer to identify the portions of the device structure that
need to be modified to accomplish a new function, and to reason about the effects of
these structural changes on the device functionality.

3. Functional Modeling of Devices
Over the last several years our research group has been developing a Functional

Representation scheme to capture an agent's causal understanding of devices [2,3,6,121.
A central thesis of this scheme is that problem solving agents often understand the

functioning of a complex device by decomposing the device function into the functions
of its structural components. The functioning of a component is similarly understood in



1 
4,

I terms of the functions of its subcomponents. This deomposition may go on upto as
many levels as needed, with only limited interactions between a few components at any
level. In the recomposition phase, the functions of the components are composed by
behaviors to obtain the function of the device. The function of a device component is
similarly obtained by behaviors that compose the functions of its subcomponents. The

specification of a behavior at any level may include pointers to deeper knowledge and
assumptions underlying the recomposition at that level.

1! 4. Functional Representation of Feedback

I

STemperature

I-F3 Sensor ensor

R. T , P 9

Pt4

2 Water Pump
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Figure 1: The Nitric Acid Cooler

Let us illustrate the Functional Representation scheme by considering an agent's
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understanding of the functioning of the the Nitric Acid Cooler (NAC) shown

schematically in Figure 1 [6]. Hot Nitric Acid (HNO3 ) enters the cooler at p, with flow
rate R and temperature T1, and exits at p4 with the same flow rate and a lower 5
temperature T2 , where Pl, p2 . . are points in the device space. Similarly, cold water
(H2 0) is pumped into the cooler at P5 with flow rate r, and temperature tj , and exits at P8 3
with flow rate r, and a higher temperature t2 . Inside the heat exchange chamber, heat is
transferred from hot Nitric Acid to cold water, thereby cooling Nitric Acid from T1 to T,
and heating water from t to t2 .

The flow rate R of the inflowing Nitric Acid is measured by a flow sensor, and
information about perturbations in its value is communicated to the water pump by a I
signal c1 in the wire connecting the sensor and the pump. The pump regulates the rate r,
at which water flows into the cooler to reflect the perturbations in value of R. This is an
example of feedforward control. Similarly, the temperature T2 of outflowing Nitric Acid
is measured by a temperature sensor, and information about perturbations in its value is
communicated to the valve by a signal c, in the wire connecting the sensor and the valve. 3
The valve regulates the rate r2 at which water enters the heat exchange chamber to reflect
the perturbations in the value of T2, and releases excess water from the device. This is an .
example of feedback control. "

4. . Function
The functional representation of a problem solving agent's causal understanding of

NAC consists of three parts. In the first, the functions of NAC are expressed as
hierarchically organized schemata, in which the nodes are the intrinsic functions of the
device and its components, and the arcs are the relations between these functions. Some
of the higher level functions of NAC and the relations between them are shown in Figure
2. We note that this part of the understanding of NAC is in terms of functional
abstractions independent of the specific device structure on which the functions are
realized. Thus, CoolNitricAcidToT2 is the primary function of NAC. HeatWater is the
secondary function of the device; it is also a side function of CoolNitricAcidToT2 .

At the next level in the network of NAC functions,
SupplyWaterToChamberAtRater 2 is a subfunction (or constituent function) of
HeatWater, it is also a supporting function for CoolNitricAcidToT 2 , i.e. its function is to
satisfy the preconditions for the accomplishment of CoolNitricAcidToT,. Similarly,
SupplyNitricAcidToPipenChamber is a subfunction of CoolNitricAcid and a supporting
function of HeatWater. This captures an agent's understanding of the interaction
between the functions of CoolNitricAcidToT2 and HeatWater, allowing him to reason
that since the subfunctior for CoolNitricAcidToT 2 is a supporting function of HeatWater
and vice versa, the Nitric Acid will get cooled if, and only if, water simultaneously gets
heated. Further, this enables the agent to view the role of functions from multiple
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3CoolNitricAcidTo SieFnto

3SupplyNitricAcid Sub-Function
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3 Figure 2: Functional Organization of the Nitric Acid Cooler

perspectives- SupplyWaterToChamnberAtRater 2 is a subfunction from the perspective ofI achieving HeatWater, but a supporting function from the perspective of accomplishing
CoolNivicAcidToT2. At the next lower level in the network of NAC functions, the
feedback and feedforward functions of ControlWaterFlowlntoCharnber andI Control WaterFiowintoCooler are similarly understood as supporting functions for
Supply WaterToChamt-.rAtRater 2.

I The schemas for some of these functions are shownM lIn Figure 3. The underlined
expressions in the figure are the primitives of a Functional Representation Language,3 each with an associated semantics. The primitives Given and ToMake provide an input-

output specification of the functions, while By specifies the behavior that resuilts in the



Function: CooiNitricAcidToT,
Given:

HN0 3 at p, with Flow Rate R and Temperature TI
ToMake:

HNO3 at p. with Flow Rate R and Temperature T,
By: Behaviorl
Provided:

H,O at P6 with Flow Rate r, and Temperature tj
End Function CoolNitricAcidToT,

Function: HeatWater
Given: 1120 at P5 with Temperature r
ToMake:

H,O at p8 with Flow Rate r, and at Temperature t,
By: Behavior2
Provided:

HNO3 at p2 with Flow Rate R and Temperature T,
End Function HeatWater

Function: SupplyWaterToChamberAtRater 2
Given: H20 at P5 at Temperature tj
ToMake: H,O at P7 with Flow Rate r, and Temperature r,
B-: Behavior4
Provided:

(i) Control Signal c1 at P,
(ii) Control Signal c) at p15

End Function Supply WaterToChamberAtRater,

Function: ControlWaterFIowIntoChamber 3
Given: HNO_? at P,, with Flow Rate R and T'
ToMake: Control Signal c, at p15

BY: Behavior6I
End Function ControlWaterFlowlntoChamber

Figure 3: Schemas for Some Functions of NAC

accompbshxnent of the function. Thus each function in the network can be used to index 3
the behaviors responsible for accomplishing it. Provided specifies the states of the device

in which only a given function can be accomplished, and relates the function to its

supporting functions.

4.2. Structure 3
In the second part of an agent's causal understanding of NAC, the structure of NAC

which realizes the above functions is expressed in terms of the primitive components and

their relations. The specification of the structure also contains schemas for the functional

abstractions of the components. This is shown in Figure 4 and 5. Thus, Chamber

I
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Begin Components
FlowRateSensor (PO.pjo.p.}
WaterPump (PsPI,'PI2 )
TemperatureSensor (P3,PI3,P 4)
Valve (p,1 SP1,P6l

Chamber {p2,p 6, 3,p7.space1 )
Pipes {Pj.P.),

(P2.p 3,space,),

(PS'PI6),

(P,6,Po6),

(P7.Pg)
Wires (PIoPi},

(P14-PISJ
End Components

Begin Abstractions-of-Components
Component: FlowRateSensor (PgPIOP2)

Functions: Measure Flow Rate of Fluids

Component: WaterPump (PP.PIP12)
Functions: Pump Water

Component: TemperatureSensor p 3 ,p13 p14}-
Functions: Measure Temperature of Fluids

Component: Valve (PI6P15,P6}
Functions: Regulate Flow Rate of Fluid

Component: Chamber (p2,.p 6,P3,p7,spacel)
Functions: Contain Fluid, Transport Fluid

End Abstractions-of-Components

Figure 4: Partial Specification of the Structure of NAC:
Some Components and their Abstractions

(P2-6i'3',P7, space1 ) is a component of NAC, the space, enclosed by the chamber
includes the space2 enclosed by Pipe (p2,p_3, space2 ), and the functions of the chamber

are to contain fluid and transport fluid. We will not devote much space here to the issue
of tepresentation of structure except to note that the functional abstractions of the

components are device independent.

4.3. Behavior
In the third part of an agent's causal understanding of NAC, the behaviors that

compose the functional abstractions of the structural components into the device
functions are represented as acyclic directed graphs in which the vertices are partial states
of the device and the edges are causal state transitions. The directed graphs for the
behaviors that achieve some of the NAC functions discussed earlier are shown in Figures



Begin Relations
Serially Connected:

Pipe (PI.P2},
Pipe (p2.p3.space.(2)),
Pipe f,,p,)

Serially Connected:
Pipe (PSP,6}'
Valve (P16,PIsP6},
Pipe (P16.P61,

Chamber (P2'P6,P3,P7.space},
Pipe (P7 ,P8}

Serially Connected:FlowRateSensor (p9 plp,},
Wire (PwoPII),
WaterPump (PsPu P12)

Serially Connected:
TemperatureSensor (p 'P3 jP . 4),
Wire (P14,P,5},
Valve (P4 6P15 .P6)

Includes: (space ,space2)
End Relations

Figure 5: Partial Specification of the Structure of NAC:
Relations between some Components

6 and 7. The primitive Using-Function specifies the function of some component that is
used by the behavior in accomplishing some higher level function, while PI refers to
some lower level behavior.

The specification of a behavior may include pointers to deeper causal knowledge
and assumptions underlying a causal state transition in the behavior. For instance,
Behaviori for accomplishing the function of CoolNitricAcidToT2  uses
(Generic-KnowledgeI) that may be stated as follows: In accordance with the Zeroth Law
of Themnodynairnic&, in the context of the Chamber{P2 p6 ,p3 ,P7 , space,) enclosing the
Pipefp 2,v3 , spacet), heat will flow from hot Nitric Acid to cold water resulting in a
decrease in the temperature of Nitric Acid from T1 to some T2 and an increase in the
temperature of water from t, to some r2.

Similarly, Behaviorl accomplishes CooiNitriqAcidToT2 under Assumptiont which
may be stated as follows: The relation between temperature T1 and flow rate R of
inflowing Nitric acid, the desired temperature T2 of outflowing Nitric acid, and the
temperature t, and flow rate r2 of water flowing into the heat exchange chamber, is such
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Behaviorl
ToAchieveFunction: CoolNitricAcidToT,

HNO3 at p,3 with Flow Rate R and Temperature TI

I By: Behavior3

HNOJ at P2
with Flow Rate R and Temperature T,

Under-Condition: H,O at P7 with

Flow Rate r, and Temperature r,

IAs-Per: Generic. Knowledge I

3 With: Assumption i

Using-Function: Transport Fluid
of Pipe (P2.P3 }

HNOJ at p 33 with Flow Rate R and Temperature T,

j Using-Function: Transport Fluid3of Pipe (p3p4p)

HNOJ at P4
with Flow Rate R and Temperature T,

End Behaviorl

IFigure 6: Behaviori of NAC

that the capacity of water to absorb heat in the chamber exceeds the capacity of Nitric

Acid to release heat.

The interactions between the functions of a device are, of course, reflected in the3 behaviors that accomplish the functions. For instance, Behaviorl for accomplishing the

function of CoolNitricAcidToT2 , and Behavior2 for achieving HeatWater shown in

Figures 4(a) and 4(b) respectively, interact in that Behaviori will result in cooling Nitric

Acid to T2 if and only if Behavior2 simultaneously results in heating water. This

interaction is being captured by the primitive Under-Condition which specifies that the3 causaW transition from one device state to- another in some behavior is conditional on

some other device state being true.

U Thus, the behaviors for accomplishing these interacting device functions are

nonlinear in the same sense that the plans to achieve interacting goals are often nonlinearI
U
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Behavior2

ToAchieveFunction: HeatWater

H20 at P5 at Temperature t,

81: Behavior4

HO at P7
with Flow Rate r, and Temperature ti

Under-Condition: HNO3 at p2 with

Flow Rate R and at Temperature T1

As-Per: Generic-Knowledge I

Using-Function: Transport Fluid of
ChamberP 7.P3 .PP2}

Vm

H20 at P7
with Flow Rate r and Temperature t:,

Using-Function: Transport Fluid of
Pipe (P7,P)

HO at p 8
with Flow Rate r and Temperature t,

End Behavior2

Figure 7: Behavior2 of NAC

[101. That is, while the device behaviors can be partially ordered, each individual
behavior being a Linear sequence of causal state transitions, a total ordering of the
behaviors is not possible. Instead, a network of behaviors mirroring the network of
Figure 2 collectively results in the functioning of the device. In fact, for the specific case
of the NAC, the device behaviors are inherently non-serializable. Thus, if a problem
solving agent were to perform a qualitative simulation to verify whether Behaviorl will
indeed lead to cooling of Nitric Acid to T2 , then he will have to perform "in parallel" a
simulation to check if Behavior2 indeed results in heating water. Since the causal state
transitions are already compiled, qualitative simulation in the Functional Representation
scheme is performed not from "first principles" or by using naive physics, but by tracing
the sequences of behavioral states organized around the device functions.
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5. Model-based Design

5.1. Design Example I
Let us illustrate how the functional representation of a designer's causal

understanding of a device in conjunction with case-based reasoning is useful for design
problem solving. Let us assume that the designer has stored in his memory the design of
NAC, along with its functional representation, indexed by its primary and secondary
functions. Let us suppose that the designer is charged with the design of a Sulphuric
Acid Cooler (SAC), and retrieves from his memory the design and functional
representation of NAC.

Now, if the designer has access to a knowledge-base of general substances and their
properties, then he may determine that both HNO3 and H2S0 4 are acids. He may
perform a qualitative simulation to check if the design of NAC will also work for cooling
Sulphuric Acid by tracing the compiled sequences of behavioral states indexed by the
device functions. If the simulation succeeds (let us assume that it does), then the designer
has a design for SAC that can be stored in memory. The designer may generalize across
the case index categories of Nitric Acid Cooler and Sulphuric Acid Cooler, and learn the. -
index category of the general Acid Cooler. He may organize his memory in a
classificatory hierarchy of three nodes: the root node of a general Acid Cooler. and leaf
nodes of its two specific instances known to the designer. Moreover, the functional
representation of NAC can also be generalized and stored at the root node of the
classificatory hierarchy. We note also that the functional representation provides a causal
explanation for the newly designed SAC.

5.2. Design Example 2
Let us consider a second example in which the designer is charged with the design

of a Sulphuric Acid Cooler that cools H2SO4 by as much as, say, 100 degrees Celsius.
Let us suppose that the designer retrieves from his memory the design for the old SAC
that can cool H9S0 4 by only, say, 70 degree Celsius. This is an instance of the more
general design problem in which the operating range of the new device is different from
that of the old one.

Again, the designer may begin by performing a qualitative simulation on the
functional representation of the old SAC. This time, however, lets suppose that the
simulation fails because Assumptionl is violated (the capacity of water in the Chamber
(P2,P 6,P3,P7,spaceJ to- absorb heat exceeds the capacity of Nitric Acid in Pipe
{P2 p3,space2) to release- heat). The important point here that the functional
representation scheme allows the designer to directly detect the violation of this
assumption by merely tracing compiled sequences of behavioral states in Behaviorl and



checking the Assumptionl along the way.

Since the flow rate and temperature of water flowing into the chamber are the only
variables in the statement of Assumptionl, the designer may decide to increase the flow
rate of water. He may determine from the functional abstractions of the components and
by tracing Behaviors 2 and 4 that changing the WaterPump or the Valve may help. He
may select a WaterPump of a larger capacity from his knowledge base of available
primitive components, and formulate a constrai t that specifies that the components
downstream to WaterPump in any behavioral sequence must be able to support the
increased flow rate of water. When he now performs a qualitative simulation, he may
propagate this constraint from one behavioral state to another. In this way, he may find
that while Assumption l is now being satisfied, the amount of water being pumped
exceeds the capacity of the Valve. Again, he may select a different Valve from his
knowledge base of primitive components that supports the increased flow rate of water
and thereby satisfies the constraint. This method of reasoning about the effect of
structural changes on devices is close to that of constraint posting [131. At end of this
process, he has a design for the new SAC that can be stored in memory.

5.3. Design Example 3
Let us consider as a third example, the design of SAC that cools Sulphuric Acid by

as much as, say, 500 degrees Celsius. Let us suppose the designer follows the same
procedure as in the second example, but cannot find any way to satisfy Assumption i.
However, if the designer knows of cascading as a generic mechanism, then he may
design a new SAC by composing an array of old SACs. This requires a knowledge base
of generic mechanisms such as cascading, feedback, etc. Each such mechanism may be
stored in the form of a device-independent functional template. In fact, the Functional
Representation scheme itself can be viewed as a template for organizing the designer's
knowledge of devices and mechanisms.

The cascading mechanism can be functionally represented as a decomposition of the
device function into several identical unspecified subfunctions, each of which is
accomplished by the same unspecified behavior. These subfunctions are recomposed into
the device function by another higher level behavior. In other words, the designer's
causal understanding of the cascading mechanism provides the composition knowledge
needed for performing the given design task. The design process itself involves the
composition of the functional representation of NAC with the functional representation of
the cascading mechanism. This can be accomplished by instantiating the functional I
representation for the cascading mechanism, and inserting copies of the functional
representation of the old SAC into its subfunction slots. 3

I
I
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U 5.4. Design Example 4
It is easy to see that there are many other examples of a similar nature for which the

I functional representation of the designer's causal understanding of devices integrated
with case-based reasoning can be used for design problem solving. An especially
interesting example along the lines of the above discussion is the adaptation of the design
of NAC to perform the function of heating water. The design and functional
representation of NAC may be retrieved from memory for this design problem since the3 secondary function of NAC is HeatWater and this might best match the specification of
the desired device functionality if the designer knows of no other devices of similar
functionality. However, adapting the design of NAC for heating water is clearly a very
complex design problem since the feedback and feedforward controls are set up wrong. A
qualitative simulation of the functional representation of NAC for the primary purpose of
heating water would detect the problems with the feedback and feedforward controls. If
the designer has available to him functional templates for generic feedback and
feedforward mechanisms then he may use these templates to correctly set up the feedback
and feedforward controls to obtain the design of the water heater.

5 6. Conclusions
Let us summarize the basic points of our.proposal for organization of knowledge for

design problem solving. While case-based reasoning is indeed an attractive approach to
design problem solving because of its use of experiential knowledge, an account is
needed of how the structure of an existing design is to be adapted to achieve a new device
functionality. This capability requires a causal understanding of how the structure of a
device enables the accomplishment of its function.

The Functional Representation scheme is a method for organizing and representing
the designer's causal understanding of devices. In this scheme, the device functions are
used to index the behaviors that compose functional abstractions of structural
components into device functions. This organization of knowledge enables a designer to
identify the portions of the device structure that need to be modified to achieve a new
functionality, and to reason about the effects of these structural changes. The integration
of this capability with that of indexing, storing, and retrieving previous design cases
provides a powerful strategy for efficiently solving complex design problems.

I A knowledge-based system based on this proposal for design problem solving is
currently under implementation at our laboratory. The system is intended to address the3 complex issues of integrating model-based. reasoning with case-based reasoning,
including the related issues of learning and memory.I

I
I
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Abstract

Reasoning about the behaviors of a device requires, of course, a language for
representing the reasoner's understanding of the device. Moreover, reasoning about
complex devices computationally efficiently requires a scheme for organizing the3 reasoner's knowledge of the device behaviors such that they are easily accessible at
the needed level of abstraction. In the functional representation scheme [51 for
expressing a problem solving agent's understanding of a device, the behaviors are
organized around the functions of the device and its structural components. In this
paper we extend this scheme to express an agent's understanding of feedback and
feedforward interactions common in complex devices. We discuss how feedback and
feedforward functions lead to nonlinear device behaviors, and the knowledge
structures needed to capture these functions and behaviors.

I
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Ashok Goel and B. Chandrasekaran
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1. Functional Representation

Most research on qualitative reasoning has been focused on predicting and

explaining behaviors of physical devices and processes (e.g. [3]). Reasoning about

the behaviors of a device requires, of course, a language for representing the

reasoner's understanding of the device. Moreover, reasoning about complex devices

computationally efficiently requires a scheme for organizing the reasoner"; knowledge

of the device behaviors such that they are easily accessible at the needed level of

abstraction. In relation to this, .Sembugamoorthy and Chandrasekaran [5] have

proposed that a problem solving agent's knowledge of device behaviors may be

organized around higher level abstractions such as the functions of the device and its

structural components. In their functional representation scheme an agent's

understanding of a device is expressed as hierarchically organized schemata, in

which the nodes are the intrinsic functions of the device and its compo ients, and the

arcs are the behaviors that result in the accomplishment of these functions. The

behaviors themselves are represented as acyclic directed graphs, in which the
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vertices are partial states of the device, and the edges are causal state transitions. I

The central thesis of this scheme is that problem solving agents often

understand the functioning of a complex device by decomposing the device function

into the functions of its structural components. The functioning of a component is

similarly understood in terms of the functions of its subcomponents. This

decomposition may go on upto as many levels as needed, with only limited

interactions between a few components at any level. In the recomposition phase, the

functions of the components are composed by behaviors to obtain the function of the

device. The function of a device component is similarly obtained by behaviors that

compose the functions of its subcomponents. The specification of a behavior at any I
level may include pointers to deeper knowledge and assumptions underlying the

recomposition at that level.

The functional representation scheme has been used for constructing deep

models of how problem solving agents understand causal phenomena such as the

functioning of simple physical devices [5] and the behaviors of plans viewed as

abstract devices [1]. These deep models in turn have been used for qualitative

reasoning about the functions and behaviors of various devices, most extensively in

the diagnosis of malfunctioning devices [2]. Our aim in this paper is to extend the

functional representation scheme to express a problem solving agent's understanding

of feedback and feedforward interactions common in complex devices. We will

discuss how feedback and feedforward functions lead to nonlinear device behaviors,

and the knowledge structures needed to capture these functions and behaviors.
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* 2. Structure of Feedback

Let us consider the Nitric Acid Cooler (NAC), a device commonly used in

chemical processing plants, for illustrating feedback and feedforward interactions.

The mechanical circuit for (a simplified version of) NAC is shown schematically in

Figure 1. Hot Nitric Acid (HN0) enters the cooler at p1 with flow rate R and

temperature T,, and exits at p4 with the same flow rate and a lower temperature T.

where pI, P2 ... are points in the device space. Similarly, cold water (H20) is pumped

into the cooler at p5 with flow rate r1 and temperature t,, and exits at p8 with flow rate

r2 and a higher temperature t2 . Inside the heat exchange chamber heat is transferred

3 from hot Nitric Acid to cold water, thereby cooling Nitric Acid from T, to T2 and heating

water from t, to t2. The flow rate R of the inflowing Nitric Acid is measured by a flow

sensor, and information about perturbations in its value is communicated to the water

pump by a signal c1 in the wire connecting the sensor and the pump. The pump

3 regulates the rate r, at which water flows into the cooler to reflect the perturbations in

value of R. This is an example of feedforward control since it is applied before the

3 exchange of heat. Similarly, the temperature T2 of outfowing Nitric Acid is measured

by a temperature sensor, and information about perturbations in its value is

communicated to the valve by a signal c2 in the wire connecting the sensor and the

valve. The valve regulates the rate r2 at which water enters the heat exchange

3 chamber to reflect the perturbations in the value of T2 , and releases excess water.

This is an example of feedback control.

I We will not devote much space here to the issue of representation of structure

3 except to say that the functional representation language provides p imitives for

specifying the device components, the relations between them, and their (device

3 independent) functional abstractions. For instance, the schema for the structure of

NAC would specify that the chamber {pT, p,p,p2 } is a component of NAC, the.. the

I
I
I
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space enclosed by the chamber includes the space enclosed by the pipe IP2,p3}, and !

that the functions of the chamber are to contain fluid and transport fluid. I
3. Function of Feedback (or Interacting Functions)

The top level decomposition of the functions, in terms of which a problem 3
solving agent may understand the functions of NAC is shown in Figure 2.

CoolNitricAcidToT 2 is the primary function of the device, where T2 is some constant I

temperature. HeatWater is the secondary function of the device; it is also a side

function of CoolNitncAcidToT2. This captures an agent's understanding that while the I
intended function of NAC is to cool Nitric Acid, as a side effect of this, water is heated

as well. Further, while the intention is to keep the temperature T2 of outflowing Nitric I
Acid as steady as possible, the temperature t, of outflowing water may vary.

At the next level in the network of Figure 2, SupplyWaterToChamberAtRater 2 is

a subfunction (or constituent function) of HeatWater; it is also a supporting function for 3
CoolNitncAcidToT 2 i.e. its function is to satisfy the preconditions for the

accomplishment of the CoolNitricAcidToT2  function. Similarly, 3
SupplyNitricAcidToPipelnChamber is a subfunction of CoolNitricAcid and a supporting

function of HeatWater. This captures an agent's understanding of the interaction

between the functions of CoolNitricAcidToT 2 and HeatWater, allowing him to reason

that since the subfunction for CoolNitricAcidToT2 is a supporting function of I
HeatWater and vice versa, the Nitric Acid will get cooled if, and only if, water

simultaneously gets heated. Further, this enables the agent to view the role of

functions from multiple perspecfives: Supply WaterToChamberAtRater 2 is a

subfunction from the perspective of achieving HeatWater, but a supporting function I
from the perspective of accomplishing CoolNitricAcidTo T2.

At the next lower level, the feedback and feedforward functions of

I

I
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ControlWaterFlowlntoChamber and ControlWaterFlowlntoCooler are similarly

understood as supporting functions for SupplyWaterToChamberAtRater2 Thus, the

feedforward and feedback functions are viewed as fulfilling the preconditions for the

accomplishment of some higher level function, in this case the

SupplyWaterToChamberAtRater 2 function which is itself a supporting function of

CoolNitncAcidTo T.

The schemas for some of these functions are shown in Figure 3. The

underlined expressions are the primitives of a functional representation language,

each with an associated semantics. The primitives Given and ToMake provide an

input-output specification of the functions, while By specifies the behavior that results

in the accomplishment of the function. Thus each function in the network can be used

to index the behaviors responsible for accomplishing it. Provided specifies the states

of the device in which only a given function can be accomplished, and relates the

function to its supporting

4. Behavior of Feedback (or Nonlinear Behaviors)

The directed graphs for the behaviors that achieve some of the NAC functions

discussed above are shown in Figure 3. The .primitive Using-Function specifies the

function of some component that is used by the behavior in accomplishing some

higher level function, while By refers to some lower level behavior. The specification

of a behavior may Include pointers to deeper causal knowledge and assumptions

underlying a causal state transition in the behavior. For instance, Behavior1 for

accomplishing the function of CoolNitricAcidToT2 uses (Generic-Knowledgel) that

I, may be stated as follows: In accordance with the Zeroth Law of Thermodynamics, in

the context of the Chamber~p 7 ,p37p,p 2p enclosing the Pipepp 3}, heat will flow from

hot Nitric Acid to cold water resulting in a decrease in the temperature of Nitric Acid

from T1 to some T2, and an increase in the temperature of water from t, to some t .
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Similarly, Behavior1 accomplishes the CoolNitricAcidTo T2 under Assumption1

which may be stated as follows: The relation between temperature T1 and flow rate R

of inflowing Nitric acid, the desired temperature T2 of outflowing Nitric acid, and the

temperature t, and flow rate r2 of water flowing into the heat exchange chamber, is

such that the capacity of water to absorb heat in the chamber exceeds the capacity of

Nitric Acid to release heat. In essence, the assumption is that the perturbations in the

values of the variables T1 and R are small enough that it is possible to compensate for

them by changing the value of the parameter r2.

The interactions between the functions of a device are, of course, reflected in

the behaviors that accomplish the functions. For instance, Behavior1 for 3
accomplishing the function of CoolNitricAcidToT 2, and Behavior2 for achieving

HeatWater shown in Figure 3, interact in that Behavior1 will result in cooling Nitric I
Acid to T. if and only if Behavior2 simultaneously results in heating water. This

interaction is being captured by the primitive Predicate which specifies that the causal

transition from 3ne device state to another in some behavior is conditional on some

other device state being true.

We note that the behaviors for accomplishing these interacting device functions 3
are nonlinear in the same sense that the pans to acnieve interacting goals are often

nonlinear [4]. That is, while the device behaviors can be partially ordered, each 3
individual behavior being a linear sequence of causal state transitions, a total ordering

of the behaviors is typically not possible Instead, a network of behaviors mirroring 3
the network of Figure 2 colectively results in the functioning of the device. In fact, for

the specific case of the skeletal NAC, the device behaviors are inherently I
non-serializable. Thus, if a problem solving agent were to perform a qualitative

simulation to verify whether Behavior1 will indeed lead to cooling of Nitric Acid to T2I

then he will have to perform "in parallel" a simulation to check if Behav or2 indeed

I
U
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results in heating water.

5. Understanding Feedback

In our approach, feedha.k and feedforward are represented as function: that

control the values of certain parameters of the device. These control functions are

achieved by nonlinear behaviors that communicate information about perturbations in

the values of the device variables. The important point here, however, is that

reasoning about the functions and behaviors of a complex device can be

computationally very expensive, especially in the presence of feedback and

feedforward interactions. It is computationally advantageous to organize the

understanding of the device into a hierarchical network of functions such that there

are only limited interactions between a few functions at any level. During problem

solving, when needed these functions can be used to index the individually linear

behaviors responsible for accomplishing them.

Representations of devices are there, of course, to be used. In fact their use

provides the only criterion for judging their adequacy. We have so far used the

functional represent-'.on of devices primarily for solving two types of problems. In

one, when the diagnostic reasoner has incomplete knowledge of certain types, the

functional representation can be interpreted and the missing diagnostic knowledge

can often be derivea. Since the function of the device is represented as being

achieved by means of a behavioral sequence, whose causal transitions are ultimately

related to the functions of the components, the functional representation yields

malfunction hierarchies. Further, since the causal sequences incorporate information

about what states fall to result due to malfunctioning of certain components, the

representation can also yield observations which may be used to verify malfunction

hypotheses. Sticklen [61 has used this idea to develop a diagnostic system, which

accesses the functional representation of disease processes for deriving additional
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diagnostic knowledge.

Another use of the functional representation of a device is to derive qualitative 3
simulations, not from first principles or by using qualitative physics, but by tracing the

causal paths organized by functions. Stcken [61 has studied the use of such 1
simulations for examining certain types of interaction between the components of a

device. Since the causal sequences are available in stored form and organized I
functionally, the real work in such simulations is not in the generation of behaviors, but

in tracing the effect of certain actions on the functionality of the system. 1
What functions ought to be included in the representation depends, of course, 3

on the level at which the agent is engaged in problem solving. For instance, if the

task is to predict the behavior of a chemical processing plant of which NAC is but one 3
small component, then it is useless to represent the feedback interactions inside NAC.

At this level, NAC may best be viewed as a "black box" that operates as a 3
homeostatic device and cools Nitric Acid to a constant temperature. Alternatively, if

the task was to explain the functioning of the temperature sensor, then again, it is 3
meaningless to represent feedback interactions at the level of NAC. However, if the

task was, say, diagnosis of NAC itself, then a representation of feedback interactions

in NAC would be clearly useful. We may add that although we have used NAC as an

example to illustrate feedback and feedforward interactions, the functional 1
representation scheme and language that we have used for representing these

interactions are device and domain independent and more generally applicable. I
1
1
1
I
U
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6. Functional Representation and Qualitative Simulation

Qualitative simulation is an alternative approach to reasoning about devices in

general, and device feedback in particular. In the qualitative simulation method of de

Kleer and Brown [3], first the relevant parameters and constraints of the device are

determined from its structure and represented as qualitative differential constraints,

then a differential perturbation is introduced into the system and a qualitative

simulation is performed, and finally changes in the values of the parameters are

tracked. There is no explicit representation of behavior or function per se, instead, the

changes in the values of the parameters are first interpreted as behaviors which may

then be ascribed a function. de Kleer and Brown have illustrated the use of this

method for reasoning about device feedback in an air pressure regulator.

There are several features in common to the method of de Kleer and Brown

and our scheme for reAsoning about device feedback. Both approaches view

feedback as a function, not as a behavior. More importantly, there is a major

emphasis in both approaches on making explicit the (otherwise tacit) assumptions

underlying reasoning about devices. There are clearly several differences between

the two approaches as well. While their work is more concerned with the qualitative

physics of device feedback, our primary concern is with a problem solving agent's

cognition of feedback. Moreover, while their approach is more concerned with the

correctness of solutions, we are more concerned with the computational efficiency of

reasoning.

Given a device structure, there is the task c' . its behavior, which is the

problem that is attacked by qualitative simulation. However, the agent also needs to

organize this behavior in such a way as to explain how the functions of the device are

made possible. For simple systems, the distinction between behavior and function is

not significant, since relevant behaviors are often also the functions. For complex
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systems, however, the functions need to be used to index and organize the causal

sequences that the structure-to-behavior reasoning has generated. Thus, the

functional representation scheme and the qualitative simulation methodology are best

viewed as complementary to each other. While the functional representation scheme

seeks to capture the content of a problem solving agent's understanding of device

feedback, the method of qualitative simulation may provide one of the mechanisms by

which the agent acquires the representation. This relationship between the two

approaches works in the other direction as well. For instance, a major drawback of the

method of qualitative simulation is that since simulation is global reasoning process,

for complex devices the method can be computationally very expensive, especially in

the presence of feedback and feedforward interactions. The functional representation

scheme, because of its hierarchical nature, may help localize the qualitative

simulation to some portion of the devicQ. The integration of the two approaches to

form a complete and coherent framework of how problem solving agents understand

the functioning of oevices, acquire this understanding, and use it for problem solving,

however, remains an open research issue.

U
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Function: CoolNitricAcidTo T2
Given:

HNO 3 at p , with
Flow Rate R and Temperature T,

ToMake:
HN0 3 at P4 with
Flow Rate R and Temperature T2

By: Behavior1
Provided:

H2 0 at p6 with
Flow Rate r2 and Temperature t,

End Function CoolNitricAcidToT 2

Behavior1
ToAchieveFunction: CoolNitricAcidTo T2

HNO 3 at p,
with Flow Rate Rand Temperature T,

By: Behavior3
V

HNO3 at p2
with Flow Rate R and Temperature T1

! Predicate: H20 at p7 with
! Flow Rate r2 and Temperature t1

As-Per: Generic-Knowledgel

1 With: Assumption1

Using-Function: Transport Fluid
w of Pipe aPP3e
V

HNO 3 at p3
with Flow Rate R and Temperature T2

End Behaviori

Figure 3: Some Functions and Behaviors of NAC
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3Function: HeatWater
Given:

H2 0 at p5 with Temperature t1
ToMake:

H20 at p, with
Flow Rate r2 and at Temperature t2

SB: Behavior2
Provided:

NR 3 at P2 with

Flow Rate Rand Temperature T1
End Function HeatWater

Behavior2
ToAchieveFunction: HeatWater

H2 0 at p5 at Temperature tj

By: Behavior4

H20 at P7 aIwith Flow Rate r2 and Temperature t,
!Predicate: HNO 3 at P2 with

I Flow Rate R and at Temperature T,

As-Per: Generic-Knowledgel

Using-Function: Transport Fluid of
ChamberjpTpp}

V
H20 at P7
with Flow Rate rand Temperature t2

Using-Function: Transport Fluid ofPipe {P7,Pd}

V
H20 at p.

~with Flow Rate rand Temperature t2

End Behavior2

3 Figure 3(continued): Some Functions and Behaviors of NAC
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Function: SupplyWaterToChamberAtRater 2  I
Given: H2 0 at p5 at Temperature t,
ToMake: 1120 at P7 with

Flow Rate r2 and Temperature tj I
By: Behavior4
Provided:
(i) Control Signai c, at pl
(ii) Control Signal c2 at p,

End Function SupplyWaterToChamberAtRater 2

Behavior4
ToAchieveFunction: SupplyWaterToChamberAtRater 2  3

H20 at p. at Temperature t,

Predicate: Control Signal c1

at P16

Using-Function: Pump H20 of
WaterPump U

V
I-20 at p 12 with
Flow Rate r, and Temperature t,

Using-Function: Transport Fluid
I of Pipe {PI2PI 3
V

H20 at p 15 with
Flow Rate r1 at Temperature t, 3

Predicate: Control Signal c2
I at p 5 I
By: Behavior7

V
H2 at p7 with
Flow Rate r2 at Temperature t,

End Behavior4

I
Figure 3(continued): Some Functions and Behaviors of NAC I
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Function: ControlWaterFIowlntoChamber
Given: HNO3 at P 13

with Flow Rate R and Temperature T2
ToMake: Control Signal c2 at p15
By: Behavior6

End Function ControlWaterFlowlntoChamber

Behavior6
ToAchieveFunction: ControlWaterFlowlntoChamber

HNO 3 at p 13
with Flow Rate R and at Temperature T2

Using-Function: Measure Temperature
! of Temperature Sensor
V

Control Signal c2 at P14

Using-Function: Transmit Signal of
Wire {P 1 ,P15

V
Control Signal c2 at p 15

End Behavior6

Figure 3(continued): Some Functions and Behaviors of NAC
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3 Abstract

The general information processing task of abduction is to infer a hypothesis that
best explains a set of data. A typical subtask of this is to synthesize a composite
hypothesis that best explains the entire data from elementary hypotheses that
can explain portions of the data. The synthesis subtask of abduction is compu-
tationally very expensive, more so in the presence of certain types of interactions
between the elementary hypotheses. In this paper, we first formulate the gen-
eral task of abduction as a constrained optimization problem that is nonlinear

and nonmonotonic. We then consider a linear monotonic version of the prob-
lem and present a neural network for solving it. The neurons in this network
represent the elementary hypotheses and the connections between them are sym-

metric. We find that the energy function for representing the abductive problem
contains product forms, and that the minimization of this function requires a
network of order greater than two. We then propose a second order network
which is composed of functional modules that reflect the structure of the abduc-

tive problem. In this architecture, the constraints of the problem are represented

explicitly and the connections bet6ween the neurons are asymmetric. We suggest
how this model can be extended to solve the general task of abduction.

!2
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1 Abductive InferenceI
Abduction is the very general information processing task of inferring a causal hypothesis
that best explains a given set of data [4]. Abduction occurs, for instance, in diagnostic
problem solving, where the data is in the form of manifestations (or symptoms) and the
causal explanatory hypotheses are about malfunctions (or diseases) [14]. Scientific data
interpretation, where the data is in the form of sensor readings and the hypotheses are
about object structures, and strategic situation assessment, where the data is in the form
of field events and the hypotheses are plans ascribed to the adversary, are also instances
of abductive inference making. Some aspects of language understanding, image processing,
and speech recognition appear to be abductive in character as well.

A typical subtask of abduction is classification of the given data into potentially
relevant elementary hypotheses stored in memory [11]. The hypotheses are matched with the
data, and depending on the degree of match, a prima facie belief value for each explanatorily

relevant hypothesis is determined. For simple abductive problems, for instance diagnosis
under the single fault assumption, the classification subtask often yields hypotheses that can
individually explain the entire data. For such problems, the elementary hypothesis with the3 highest belief value represents the best explanation.

In general, however, an elementary hypothesis that can explain the entire data may
not be available. Instead, a composite hypothesis has to be synthesized from elementary
hypotheses that can explain various portions of the data. A composite hypothesis is opera-
tionally the best explanation for the data if it explains as much of the data as possible, if it
is made up of most plausible elementary hypotheses, and if it is parsimonious. Synthesizing
a composite hypothesis that satisfies these criteria for a best explanation is computation-
ally very expensive, more so in the presence of certain types of interactions between the
elementary hypotheses i1. This has led to some attempts at exploiting concurrency in syn-
thesizing composite hypotheses (e.g. [12]), including our own work on concurrent synthesis
of composite hypotheses on a shared memory architecture (6], and on a distributed memory
message passing architecture [8]. Our work on distributed synthesis of composite hypotheses
has quite naturally led us to think in terms of neural architectures for the task. From a
parallel processing viewpoint, neural networks form an attractive proposal for an efficient,3 fine grained, massively parallel machine dedicated to some special class of problems.

In this paper we first formulate the general abductive task as a constrained optimiza-
tion problem that is nonlinear and nonmonotonic. We then consider a linear monotonic
version of the problem and discuss two different neural architectures for solving it. Finally,
we suggest how this model can be extended to solve the general task of abduction problem.
We note that a connectionist architecture for diagnostic problem solving viewed as an in-
stance of abductive reasoning has recently been reported by Peng and Reggia (131. However,
their model for the task of abduction is significantly different from our model. Their architec-
ture for solving the abductive problem is also substantially different from the architectures
proposed in this paper.
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2 Abduction as a Combinatorial Optimization Prob-
lem I

2.1 Characterization of the Task 3
Let D = {diit = I,...,N} be a finite set of N data (effects, .facts). Let H = {h:j =•
1.,M} be a finite set of M elementary (causal) hypotheses. Let q be a map from subsets
of H to subsets of D; q • 2- 2 D. We interpret q(hj) = Dj, where hj E H and D. g D, as
the ezplanatory coverage of h,, i.e. hi can explain only and all members of Dj.

Let D0 = {d i = 1,..., n} be a set of n observed effects and given facts, where
Do C_ D. The information processing task of abduction may be characterized as a five-tuple
< D, H, q, D, H, >, where D, H, q, and D° are the inputs to the task, and H,. the output 3
of the task, is a subset of H,, H, ' H,, that best explains D,.

Let B = = 1,..,1L} be a finite set of 1 belief values. Let H, H H such that
each hj E H, can explain some non-empty subset of Do. Let p be a map from H, to B,
p H, -. B. We interpret p(hj) as the prima facie belief value for h1 . The classification
subtask of abduction takes D, H, Do, and q-' as input, where q-1 is the inverse map of q; 3
and gives He and p as. output (cf.[7]).

Since the classification problem is relatively well understood, and a number of neural
architectures for solving it already exist (e.g. [2]), we will not discuss it any further in this U
paper. Instead, we will focus on the synthesis subtask of abduction, which takes Do, H,, q,
and p as input, and gives Hc as output. 3
2.2 Characterization of the Best Explanation 3
The best explanation can be operationally characterized based on the following three opti-
mization criteria:

1. Maximal explanatory coverage of data: A co.mposite hypothesis H.1 is a better expla-
nation of D. than another composite hypothesis H.2 if q(Hc1 ) D q(H,2) [strictly, if 3
(q(H.,) n D.) D (q(H. 2) f- D,)]. Ideally, the assembled composite hypothesis, H,,
would provide complete explanatory coverage of D, i.e., q(H.) = D,. This condition
represents the constraints on the abduction problem.

2. Maximal belief in hypothesis: A composite hypothesis Hj1 is a better explanation of Do
than another composite hypothesis H,2 if p(HI) > p(H,2 ). In one model of abduction I.
[8], p(H.1) > p(H, 2) implies that
Vd E D,, and Vh2 E 142 such that d e q(h2),
3hi E Hj1 such that d E'q(h1 )A p(ht) > p(h 2).

41 I
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This specifies that the component hypotheses. in H, should be locally optimal in terms3 of their belief values.

3. Minimal hypothesis: A composite hypothesis Hj1 is a better explanation of D, than
another composite hypothesis H,2 if I H1 I < I H 2 I. This global optimization condition
specifies that H, should be parsimonious. In a somewhat different model of abduction
(81, this criterion is stated as H1 C H42, which leads to an inherently sequential mode3 of processing.

We note the potential for conflict between these three criteria for a best explanation.
This conflict can be resolved by imposing a precedence relation according to which maximal
coverage of the data has the highest precedence and parsimony of the composite hypothesis
has the lowest. We note also that depending on the maps q and p the synthesis task may be
underconstrained, in which case the synthesized hypothesis would only be a best explanation.
Synthesizing a composite hypothesis that satisfies the above criteria for a best explanation3 is NP-Complete L.

3 2.3 Interactions Between Elementary Hypotheses

Several distinct types of interaction are possible between two hypotheses hl, h 2 E H, "11':

e Associativity: The inclusion of h, in H, suggests the inclusion of h2 . Such an interaction
may arise if there is knowledge of, say, a statistical association between h, and h2 .

Additivity: h, and h2 cooperate additively where their explanatory capabilities overlap.
This may happen if h, and h2 can separately explain some datum d E D0 only partially,

Sbut collectively can explain it fully.

e Incompatibility: h, and h2 are mutually incompatible, i.e., if one of them is included
in H, then the other should not be included.

9 Cancellation: h, and h2 cancel the explanatory capabilities of each other in relation
to some d E D0 . For example, h, might imply that an increase in some data value,
while h2 may imply a decrease in the value, thus canceling each others explanatory
capability with respect to that datum.

The synthesis subtask of abduction is nonlinear in the presence of incomptability
interactions and nonmonotonic in the pres-nce of cancellation interactions.

!5
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I
3 Abductive Inference on a Neural Network

We now consider a special version of the general problem of synthesizing composite hypothe-
ses that is linear, and hence also monotonic. The synthesis task is linear ill if n

vhi, h, E H., q(h,) U q(hj) = q({h., hA})

and it is monotonic [1] if 3
Vhj, h; E H., q(h1 ) U q(h,) _ q({hi, hj})

In this version of the problem, we assume that the elementary hypotheses are non-interacting,
Z.e. they offer mutually compatible explanatory alternatives where their explanatory coy-
erages overlap. We also assume for simplicity that the belief values found by the classifier
for all I E H, are equal to 1. (Later, we relax these assumptions and consider the general
version of the abductive task).

Under these conditions the task of synthesizing a composite hypothesis can be rep- U
resented by a bipartite graph consisting of nodes in the set D. U H.. There are nc edges
between the nodes in D., nor are there any edges between the nodes in H, The edges
between the nodes in D0 and the nodes in H,. can be represented by a matrix Q of m rows
and n columns, where the rows correspond to data di E D. and the columns correspond to
hypotheses h, E H,. The entries in the matrix may be denoted Qj2 and indicate whether a 3
given data is explained by a specific hypothesis. The entries are defined as:

Q j 0 if datum di is not explained by hypothesis hj 3
1 if datum di is explained by hypothesis hj

Given matrix Q for the bipartite graph, the synthesis subtask of abduction can be I
modeled as a set-covering problem, which is to find the minimum number of columns that
cover all the rows (cf. [15]). This ensures that the composite hypothesis will explain all
elements of Do and will be parsimonious (since tb- 1,,'ef values for all h E H. are assumed
to be 1, these are the only two remaining criteria icr ' , racterizing a best explanation). I
3.1 A Neural Model of Computation

Hopfield and Tank [9,10] have proposed a neural network in which highly interconnected i
neurons collectively compute good solutions to difficult optimization problems such as the
Traveling Salesman Problem (which is NP-complete). The neurons in the network are analog 3
devices which may make them closer to biological neurons than strictly digital models. The
power of this model of computation comes from the rapidity with which acceptable solutions
are found, though the solutions are not guaranteed to be the globaly optimal. The emphasis n
in the model is on exploitation of massive parallelism as opposed to the pursuit of the best

6



solution, the meaning of which often carries a certain degree of arbitrariness for many real3 world problems.

The processing elements (or neurons) can be modeled as amplifiers having a sigmoid
input-output relationship defined by V = g(uj) where the output voltage I/j of amplifier j
is a function of the input voltage uj. Connection between pairs of neurons is defined by a
connectivity matrix {Vij} i,j = 1,... , N; a negative value of connectivity indicates that
the connection is inhibitory. Hopfield [61 has shown that in the case of symmetric connections
between neurons i.e., Vi # j Vi, = Wij , the network evolves to stable states in which the
outputs of all neurons remain a constant. The time evolution of the individual neurons is3 given by

N

duj/dt = -uj + W j WV + Ij
i=1

where Ij represents the input bias current to the jth neuron. These external bias
currents serve the purpose of setting the threshold values of the gain functions. The specific
values of the steady-state output voltages V obtained from the time evolution of the network
are determined by the bias currents Ij and the initial values of the input voltages ui.

If the diagonal elements of the W matrix are zero and the amplifiers operate in a high
gain mode, i.e., their gain functions are good approximations to threshold functions, then
the stable states of the network are the local minima of the energy function defined by

3 1 NN N

i=1 j=1 j=1

The state space of the network of N neurons is defined by the interior of a hypercube
of dimension N, and the set of all local minima of energy E is defined by the values of 'Vi.
By a proper choice of the gain function, the local minima of E can be constrained to occur
at the corners of the N-dimensional hypercube i.e., with all the values of '; = 0 or 1. This
is especially useful when one is interested in digital solutions (0 or 1) to a given problem.
An appropriate choice for the gain function is

1

V= j(1 + tanh(u,))

I 3.2 A Neural Network for Abductive Inference

To solve problems using neural networks, one must cast them into the neural network model.
For the synthesis subtask of abduction, we associate a neural variable V with each hypothesis
h E H. to indicate if the hypothesis is included in the composite hypothesis C. We minimize

a i7
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I
E7= Vj (the cardinality of the composite hypothesis) subject to the constraint that all the
data d E Do are explained i.e., Vi = 1,2,.. .,n, Er=LQiV< > 1. We derive the energy 3
function as follows: 

1

E~aEvj+ ,3*ZH{(1Qi)+(l-t')
j:=1 i:l j=

where a and 3 are positive constants. The first term in the energy function represents I
the cardinality of the composite hypothesis and the second term represents the penalty for
lack of complete coverage. The second term will have a value 0, which is its lowest, in the
case of complete coverage - for each datum d E D., the product will be 0 if there is at least I
one hypothesis h E He that can explain it, and among those that can explain it, at least one
of them is included in the composite hypothesis. Since, ensuring complete coverage of the
data has a higher precedence than parsimony of the composite hypothesis, the constant 3
should be much larger than c.

We note the appearance of the product form in the energy function. This requires U
a k-th order neural network, where k = max, E'l" Qij, the largest number of hypothesis
h E He that can explain Lny one of d E Do. A k-th order neural network admits up to
k-way connections among the neurons [161. A k- way connection could be thought of as a I
bus connecting those neurons which participate in the connection. With symmetric k-way
connections, the energy function of such a network can be shown to be non-increasing with
time. An example of a 3-way symmetric connection is one where

Vi,ji, k W,,k = Wik, = Wjki = Wjk= Wk= V,,,,

i.e., the connectivity W is the same for all permutations of the subscripts. We note
that such a higher order network can solve the synthesis problem using only m neurons, one I
for each h E H.

4 A Functional Architecture for Abductive Inference

4.1 A Structured Neural Network for Abduction N
While the notion of a higher order neural network for abductive reasoning appears theoreti- 3
cally attractive and may even admit practical implementations, it is not clear how plausible
this model is from the biological and cognitive viewpoints. From the biological perspective,
the evidence for the existence of higher order synaptic connections is unclear. From the
cognitive perspective, the model is poor in the primitives used to represent the abduction
problem. While the causal explanatory hypotheses are represented explicitly in the model,
the constraints of explaining the given data are represented only implicitly in the form of

8I
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the energy function. This implies, among other things, that the capability of the network to
explain its actions and justify its conclusions may be rather limited.

These observations have led us to think in terms of a neural model in which the
constraints of the abductive problem are represented explicitly. The neural network may be

Scomposed of different subnets, each responsible for ensuring the satisfaction of the different
criteria for the best explanation. For the linear version of the synthesis problem that we
have considered so far in this paper, one subnet may represent the hypotheses h E H, and
ensure global parsimony of the composite hypothesis, while another subnet may explicitly
represent the local constraints of explaining the data elements d E D, and ensure maximal
explanatory coverage of D.. These subnets may be viewed as functional modules that reflect
the structure of the problem and cooperatively perform the task of abduction. We note
that assigning different functions to subnets comprising the network makes for a structured3 neural network [5].

In fact, this is the functional organization that we have used for the distributed mem-
ory message passing model for abductive reasoning [8]. In this model, one layer of processes
representing the m elementary hypotheses are responsible for ensuring parsimony of the
composite hypothesis (as well as for accommodating interactions between the hypotheses
for the general abductive problem). Another layer of processes corresponding to the n data
elements are responsible for ensuring maximal coverage of data (as well as ensuring maximal
belief in the composite hypothesis for the general abductive problem). Each process repre-
senting an explanatory hypothesis makes local decisions based on the knowledge available
to it and communicates its results to the relevant data processes. Similarly, each process
corresponding to a datum to be explained makes local choices and communicates its results
to the appropriate hypotheses processes. (For the general abductive problem, the hypothe-
ses' processes also communicate with one another to accommodate interactions and ensure
consistency of the growing composite hypothesis). This flow of information back and forth
between the two layers of processes continues until a composite hypothesis is fully synthe-
sized. We note that a similar functional organization of processes that allows feedback of
information between two layers of processes has been used in neural models based on the
adaptive resonance theory [2]. However, neural architectures based on this theory have so
far been used only for the task of classification.

Tank and Hopfield [17] have proposed a neural network for the linear programming
problem that implicitly captures many of these ideas. We are currently developing an in-
tegrated neural model for the general problem of abduction based on their scheme. In this
model there are m + n neurons. The m neurons which represent hypotheses h E H. in the
module responsible for ensuring parsimony are denoted as f#,j = 1,... , m. These neurons
operate in the high gain mode in order to provide 0/1 solutions. The module responsible
for satisfying the constraints of explaining each d E D. is made up of n neurons denoted by
g1,i = I,... ,n, one for each constraint, ET, QIV > 1. The output of the neuron gi is zero
if the corresponding datum d, is explained by some elementary hypothesis in the composite
hypothesis.

19
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The pattern of connectivity among the modules represents the interaction between
the competing criteria which characterize the best explanation. Thus, in the network for
abductive inference, the output of each fy hypothesis neuron is transmitted to the input
of those constraint neurons gi which represent a constraint that the hypothesis can satisfy.
Similarly, the output of each g neuron is transmitted to those fh neurons that can help satisfy
the constraint. The relative speeds of operation of the neurons in the different modules reflect
the precedence relationship among the criteria. Thus the gi neurons operate at a much higher
speed than the fi neurons reflecting the precedence relation between the criteria of complete
coverage and parsimony.

4.2 Extensions to the Model

It is easy to extend the above model for the general synthesis subtask of abduction. The
prima facie belief values of the elementary hypotheses can be incorporated into the model by
assigning different weights to the connections from the fj neurons to the gi neurons. Thus
the weight of the connections from the fi neuron representing the elementary hypothesis
h E H may represent the belief value p(h).

The model can also accommodate certain types of interactions between the elementary
hypotheses. In fact, the mechanism for handling additive interaction between two hypotheses
hl, h2 E H. is implicit in the architecture. The associative interaction can be accommodated
by providing an excitatory connection between the neurons representing the two hypotheses.
Similarly, the incompatibility interaction between two hypotheses can be accommodated by
providing an inhibitory connection between the neurons corresponding to them. However, we
know of no easy way to accommodate the cancellation interaction between two hypotheses;
this is not particularly disturbing since cancellation is poorly understood in general, and has
not yet been adequately captured in any model for abductive inference, neural or otherwise.

This functional neural architecture for abductive inference, unlike the previous model,
requires neither symmetric connections between the neurons nor a higher order network. The
use of asymmetric connections is closer to the current models of synaptic connections. The
reduction in the complexity of the architecture is due to the functional modularization and
explicit representation of problem constraints. The computational advantages of explicit
representation of abstractions (such as the problem constraints) and functional organization
of processing (such as the modularization of the network into specific subnets) are inde-
pendent of the underlying architecture of their realization. In fact, it is these abstractions
and organizations that provide the computational theory of performing a given information
processing task such as that of abduction [3].
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Abstract the advantages as possible of both approaches. We will
be using examples from the Generic Task (GT) approach

This paper describes our research which is an attempt to for building knowledge-based systems in our discussion
retain as many of the advantages as possible of both task- since this approach had its genesis at our Laboratory
specific architectures and the flexibility and generality of where it has further been developed and applied for a

I more general problem-solving architectures like Soar. It in- number of problems; however the ideas are applicable to
vestigates how task-specific architectures can be constructed other task-specific approaches as well.
in the Soar framework and integrated and used in a flexible
manner. The results of our investigation are a preliminary
step towards unification of general and task-specific problem The GT Paradigm

* solving theories and architectures. snhe GT paradigm is a theory of types of goals and the
problem solving methods needed to achieve each type.

Introduction By problem solving method we mean the specification
of behavior to achieve a gdal. The paradigm has three

Two trends can be discerned in research in problem solv- main parts:
3 ing architectures in the last few years: On one hand,

interest in task-specific architectures [Clancey, 1985, 1. The problem solving of an intelligent agent can

Marcus and McDermott, 1987, Chandrasekaran, 1986] be characterized by generic types of goals. Many

has grown, wherein types of problems of general util- problems can be solved using some combination of

ity are identified, and special architectures that support these types.

the development of problem solving systems for those 2. For each type of goal there are one or more problem
ypes of problems are proposed. These architectures solving methods, any one of which can potentially

help in the acquisition and specification of knowledge be used to achieve the goal.
by providing inference methods that are appropriate for
the type of problem. However, knowledge-based systems 3. Each problem solving method requires certain
which use only one type of problem solving method are kinds of knowledge of the task in order to exe-
very brittle, and adding more types of methods requires cute. These are called the operational demands of

a principled approach to integrating them in a flexikle the method [Laird et al., 1986].
I way. The term generic task refers to the combination of a

Contrasting with this trend is the proposal for a type of goal with a problem solving method and the
flexible, general architecture contained in the work on kinds of knowledge needed to use the method. The GT
Soar [Laird et al., 1987]. Soar has features which make for classification by establish-refine (called the E-R GT)
it attractive for flexible use of all potentially relevant is given as:
knowledge or methods. But as a theory Soar does not
make commitments to specific types of problem solvers Type of Goal Classify a (possibly complex) descrip-N or provide guidance for their construction. tion of a situation as a class in a set of categories.

In this paper we investigate how task-specific archi- An instance of this goal is the classification of a

tectures can be constructed in Soar to retain as many of medical case description as one of a set of diseases.

I 1



Problem Solving Method This is a hierarchical clas- Problems with GT Systems
sification method that works by creating and test-
ing hypotheses about the plausibility that the de- Many flexibility problems arise because a GT architec-
scription of the situation represents an instance of ture contains assumptions not present in the original GT
one or more of the classes, problem solving method. For example, our architecture

for hierarchical classification assumes that hypotheses
1. If there are no initial hypotheses about what are generated from a pre-defined hierarchy. While this

class the description is an instance of, then is a common way to generate refinements, other ways
try to suggest at least one. exist and might be useful in certain domains. Second,

the architecture immediately generates refinements for
2. Try to confirm or reject any hypothesis that a confirmed hypothesis. An alternative is to test all the

is suggested. hypotheses in the current state before refining any that

3. If a hypothesis is confirmed, determine the were confirmed. Third, the architecture assumes that
possible refinements of the hypothesis and any problem solver it calls will correctly function. We
suggest them. cannot easily modify the architecture to gracefully han-

4. If the goal is not met, go to step 2. dle these situations.
Another set of problems involves the integration of

multiple GT problem solvers. The simplest kind of inte-
Kinds of Knowledge These consist of a refinement gration is when one problem solver calls on another as

hierarchy, hypotheses about the presence of a direct means to achieve a subgoal. This is easily done
classes, confirmation/rule-out knowledge for these using our current architectures by directly invoking the
hypotheses, and know ledge to determine when the method and domain knowledge needed to achieve a sub-
goal of classification has been achieved, goal. However, sometimes we require more interaction

between the problem solvers. For example, in our med-
In addition to classification by establish-refine, GT's ical diagnosis systems the hypothesis assembly problem
have been created for pattern directed hypothesis match- solver has knowledge about those diseases that can oc-
ing Johnson et al., 1988), object synthesis by plan selec- cur together and those that are mutually exclusive. This
tion and refinement [Brown and Chandrasekaran, 1985], knowledge can be used help guide the classification of
and assembly of explanatory hypotheses diseases; however, it is difficult to implement because
[Josephson et al., 19871. the classification architecture has no place for represent-

ing or using this knowledge. Our only solution was to
specially modify both architectures so that they could

GT Systems interact in the desired way.
Finally, new methods are difficult to add to existing

A specialized architecture or shell has been constructed problem solvers; each problem solver must be modified
for each GT. Each architecture is a combination of an torcgieadueanwmhd.Wwullkeo

inference engine with a knowledge base. The inference have the system automatically consider methods based

engine is a procedural representation of a GT's problem on the type of goal a method is designed to achieve.

solving method. The knowledge base provides primitives

for encoding the domain specific knowledge needed to in-
stantiate the procedure. We refer to the combination of How can Soar Help?
the encoding of the domain knowledge in the knowledge
base and the method that can use it as a problem-solver. In Soar, all problem solving is viewed as search for a goal

This system building approach offers a number of ad- state in a problem space. Operators are used to move
vantages: First, it is easy to decide when a GT architec- from state to state. Knowledge in the form of produc-
ture can be used because the knowledge operationally tions is used to select problem spaces, states, and op-
demanded by the method is explicit in the definition erators. Productions generate preferences for an object
of the GT. Second, knowledge acquisition is facilitated (ie. a problem space, state, or operator) that indicate
because the representational primitives of the knowl- how the object relates to the current situation or other
edge base directly correspond to the kinds of domain objects. Whenever the directly available knowledge is
knowledge that must be gathered. Third, explanation insufficient to make progress Soar automatically gener-
based on a run-time trace can be couched in terms of ates a subgoal. Therefore, every decision that needs to
the method and knowledge being used to ap.ply it. be made can become a goal to be achieved by search-
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ing a problem space. This is called universal subgoaling. generate-refinements <hyp> Generate aca to the
In knowledge lean situations Soar can make progress by state) those hypotheses that should be considered
using an appropriate weak method. The weak methods as a refinement of <hyp>.
are not explicitly programmed in Soar, but arise from
the knowledge available to solve a problem. If the pro- Operator Instantiation An establish operator is cre-I cessing in a subgoal is no longer needed, Soar will au- ated for any hypothesis in toe current state that has not
tomatically terminate the subgoal and resume problem yet been judged. A generate-refinements operator is cre-
solving in a higher level goal. This is called automatic ated for any hypothesis that is confirmed but not refined.
goal termination. A suggest-initial-hypotheses operator is created if there
o Each of these features directly relate to one or more are no hypotheses in the current state.
of the limitations with GT systems. The selection of al-
ternatives via preferences allows new options and knowl- Domain knowledge To use the E-R strategy in aedge to be esily added to existing systems. Brittleness particular domain, knowledge to perform the following

is decreased because of Soar's ability to automatically functions must be added to the Soar implementation.
create subgoals to overcome failures and its ability to fall

m back on weak methods. Finally, automatic goal termina- 9 Create the initial state containing one or more ini-
tion eliminates unnecessary computation and provides a tial hypotheses.
more natural flow of control.

e Detect when classification is complete.

I Mapping GT's to Soar * Implement the three operators.

We have begun to map GT's to the Soar architecture Operator Implementation There are many ways
in a straight-forward manner. Each GT is implemented to implement the operators used in the classify space.
as a problem space; the states represent the developing To make ER-Soar easy to use we have implemented a
solution and the operators and operator suggestion rules method for generating refinements from a pre-defined hi-
implement the problem solving method. The required erarchy and a method for establishing hypotheses based
kinds of knowledge can either be represented directly by on a confidence value.

productions or generated at run-time using additional
* problem spaces. Discussion

To illustrate, we present ER-Soar, an implementation ER-Soar combines the advantages of the GT approach
of the E-R GT in Soar. We use a single problem space with the advantages of the Soar architecture. Knowl-

* with three operators: suggest-initial-hypotheses, estab- edge acquisition, ease of use, and explanation are all
lish, and generate- refinements. facilitated in ER-Soar because subgoals of the problem

solving method and the kinds of knowledge needed to
State Representation The state contains those hy- use the method are explicitly represented in the imple-
potheses that have been considered and those that are mentation. The subgoals of the method are directly
worth immediately considering. Any hypotheses in the represented as problem space operators. The kinds of
state that are refinements of other hypotheses (also in knowledge needed to use the method are either encoded
the state) are linked together to form a refinement hier- in productions or computed in a subgoal. The same ad-
archy. Each hypothesis also has an indication of whether vantages apply to the supplied methods for achieving
it has been confirmed, rejected, or not yet judged, and subgoals. Finally, the implementation mirrors the GT

* whether it has been refined or not. specification quite closely making ER-Soar easy to un-
derstand and use.

Operators Tbo! classify problem-space uses 3 opera- ER-Soar overcomes many of the problems suffered
* tors: by previous GT systems. Automatic subgoaling allows

unanticipated situations to be detected and handled. If
suggest-initial-hypc -.es Determine one or more no specific method for handling the situation is available,

initial hypoth" - an appropriate weak method can be used. Whenever a
goal needs to be achieved it is done by first suggesting

establish <hyp> Deterrtne whether the hypothesis, problem-spaces and then selecting one to use. This al-
<hyp>, should be - .-med or rejected. lows new methods in the form of problem-spaces to be
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easily added to existing problem solvers. If no specific Johnson et al., 19881 Johnson, T. R., Smith. Jr.. J.. I
technique exists to determine which method to use, Soar and Bylander, T. (1988). HYPER: Hypothesis match-
will try to pick one using a weak method. Automatic ing using compiled knowledge. Technical report, Lab.
goal termination provides an integration functionality for AI Research, CIS Dept., The Ohio State Univer- I
not available in previous GT architectures. In general, sity, Columbus, Ohio.

the integration capabilities of ER-Soar are greatly en-
hanced. Because of preferences and the additive nature [Josephson et al., 1987] Josephson, J. R., Chandra- U
of productions, new knowledge can be added to integrate sekaran, B., Smith, J. W., and Tanner, M. C. (1987).
ER-Soar with other methods without modifying existing A mechanism for forming composite explanatory hy-
control knowledge. potheses. IEEE Transactions on Systems, Man, and

Cybernetics, SMC- 17(3):445-454.

[Laird et al., 19861 Laird, J., Rosenbloom, P., andConclusion Newell, A. (1986). Universal Subgoalng and Chunk. U
isg. Kluwer Academic Publishers, Massachusets.

ER-Soar illustrates how the advantages of task-specific
architectures can be combined with the advantages of [Laird et al., 19871 Laird, J. E., Newell, A., and Rosen-
a general architecture. The approach used to create bloom, P. S. (1987). SOAR: An architecture for gen-
ER-Soar is simple and can easily be applied to other eral intelligence. Aritiical Intelligence, 33:1-64.
task-specific architectures. We are currently using this (Marcus and McDermott, 1987] Marcus, S. and McDer-
approach to create Soar versions of the GT's for hypoth mott, J. (1987). Salt: A knowledge acquisition tool
esis matching and hypothesis assembly. Following this, for propose and revise systems. Technical report,
we will investigate various ways of integrating the three Carnegie-Mellon University.
methods.
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U
A Mechanism for Forming

Composite Explanatory Hypothesesa

John R. Josephson, B. Chandrasekaran, 3
Jack W. Smith Jr., and Michael C. Tanner

Abstract I

We describe a general problem solving mechanism that is especially suited for performing a particular 3
form of abductive inference, or best explanation finding. A problem solver embodying this mechanism

synthesizes composite hypotheses by combining simple hypotheses to satisfy explanatory goals. These 3
simple hypotheses are formed by instantiating prestored-explanatorv "concepts". In this way the problem

solver is able to arrive at complex, integrated conclusions which are not pre-stored. We present a 3
computationally-feasible, task-specific problem-solving mechanism for a particular information processing

task which is nevertheless of very great generality. The task is that of synthesizing coherent composite 3
explanatory hypotheses based upon a prestored, and possibly vast collection of hypothesis-generating

concepts. This is seemingly a common task of intelligence, and potentially a major component of 3
diagnostic reasoning, especially where single-fault assumptions are inappropriate. This work contributes

to showing how it is computationally possible to come to "know" based upon the evidence of the case. 3
In this paper we describe the mechanism both functionally and structurally; that is, the why and what of

the main computations are described, together with algorithms that show how each of these computations

can be accomplished. The mechanism integrates a classification machine, used for selecting plausible 3
hypotheses, with a specialized means-ends machine, used for assembling a best explanation from the

plausible hypotheses thus selected and for pointedly investigating alternative explanations. There are 3
also two other specialized mechanisms for the subsidiary functions of: recognizing the applicability of a

hypothesis to the situation, and of interpreting the situation-specific raw data to satisfy the informational 3
needs of the other components. The result of combining these distinct computational mechanisms is an

integrated knowledge-based problem solver, functionally suited to its abstract information processing 3
task.

aThe present paper is an expanded and revised version of "Abduction by I
Classification and Assembly" which was presented at The Philosophy of Science
Association Biennial Meeting for 1986 and appears in PSA 1986, Volume One. 3

I
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Although the mechanism we describe here is abstracted from the architecture of the Red-2 system,

several other diagnostic Al systems embody it too, in varying degrees.

1. Introduction

1.1. Methodology
Artificial Intelligence is the study of complex information-processing problems that often have their roots in

some aspect of biological information processing. The goal of the subject is to identify interesting and
solvable information processing problems, and solve them. (MARR771....

Vision is an information processing task, and like any other, it needs understanding at two levels. The
first, which I call the computational theory of an information processing task, is concerned with what is
being computed and why; and the second level, that at which particular algorithms are designed, with how
the computation is to be carried out. [MARR79]

- David Mart

Cognitive problem solving too can be understood in terms of recognizable information processing tasks

subject to the same two-level understanding that is suggested for vision. The computational theory of a

cognitive task is an understanding of what is being computed (input/output), and why (what its

significance is); that is, an understanding of the functionor goal the computation. The second level is an

understanding of how the computation can be carried out by particular algorithms or mechanisms. In this

paper we describe one such task, a form of abductive inference. We show how it can be accomplished

under appropriate circumstances by way of certain subtasks. We describe the major subtasks both

functionally, and in terms of mechanisms whereby they can be efficiently accomplished.

The work reported here takes place in the context of a theory of generic tasks in knowledge-based

problem solving [CHAN86A]. The theory proposes that complex reasoning processes can be analyzed in

terms of a small set of basic types of reasoning (the generic tasks) each of which corresponds to an

information processing strategy especially suited for achieving a particular knowledge-level functionality.

Thus for example hierarchically organized symbolic pattern matching is a particularly apt strategy for

concept matching, that is, for matching a prestored concept to a situation to determine whether the

concept applies to the situation. Generic tasks may be thought of as "types of problem

solving [Chan83]", or as "primitive abilities" providing "building blocks of intelligence".

In our laboratory at Ohio State we have developed a software tool for each of the tasks that we have

identified so far, and an integrated toolset is presently under development. The generic tasks include:

hierarchical classification [Bylander86c, Gomez4 plan selection and



3 3
refinement [Brown, Brown85, Herman] (for routine design and planning), concept 3
matching [Bylander86c, Chan86a] knowledge-directed Indirect Inference [Mitt84] (for intelligent data

abstraction and retrieval), prediction by abstracting state changes [Ronnie], and assembly and 3
criticism of composite explanatory hypotheses [Punch).

1.2. Scope

The mechanism described in this paper is that of a composite problem solver which arrives at 3
abductive conclusions by using hierarchical classification, concept matching, knowledge-directed indirect

inference, and assembly and criticism of composite explanatory hypotheses. A classification machine, 3
used as a source of plausible hypotheses, is united with a specialized means-ends machine, which is

used for assembling an overall best explanation from the plausible hypotheses, and also for criticizing the I
hypothesis by pointedly investigating the space of alternative hypothesis assemblies. There are also two

other specialized mechanisms for the subsidiary functions of: recognizing the applicability of an 3
explanatory concept to the situation, and for interpreting the situation-specific raw data to satisfy the

information needs of the other components. The result of putting together these distinct computational I
mechanisms is an integrated knowledge-based problem solver, functionally suited to the abstract

information processing task of forming composite best explanations, based on prestored explanatory I
concepts. 3

The present paper will develop the idea of abductive inference, and describe the mechanism and its

rationale in some detail. The emphasis will be on the assembly and criticism of composite hypotheses,

and on classification as a mechanism for accessing explanatory concepts. I
1.3. Red

Red is a knowledge-based medical expert system for use in blood banks as a red-cell antibody 3
identification consultant. (JOSE84b, JOSE85b, SMIT85] The system has now been through two working

versions, and a third is under construction at the time of this writing. The present paper presents an 3
abstract description of the problem solving mechanism of Red-2, the second distinct version of the

system. Thus Red-2 serves as a working proof of the realizability of most of the abstract design. An 3
evaluation of Red-2's performance has been made [Smith-20-cases], and shows that the system almost

always produces clinically acceptable answers, even in complex cases. I

I
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2. Abduction

Abduction or Inference to the Best Explanation is a form of inference that follows a pattern

something like this:

D is a collection of data (facts, observations, givens),
H explains D (would, if true, explain D),
No other hypothesis explains D as well as H does.

Therefore, H is correct

The strength of an abductive conclusion will in general depend on several factors, including:

* how good H is by itself, independently of considering the alternatives,

e how decisively H surpasses the alternatives,

& how thorough the search was for alternative explanations, and

e pragmatic considerations, including

• the costs of being wrong and the benefits of being right,

" how strong the need is to come to a conclusion at all, especially considering the
possibility of seeking further evidence before deciding.

Abductions, as we have just characterized them, go from data describing something to an explanatory

hypothesis that best accounts for that data.

Notice that calling an inference "abduction" carries with it the idea of its goal: a best explanation.

Contrast this with characterizing an inference as "deduction", which carries instead the idea of a

constraint that is satisfied: that the inference is guaranteed to be truth-preserving. Since there is no

intrinsic incompatibility between explanatory goals and truth-preservation constraints, it is conceivable for

there to be deductive abductions. In fact, if all of the alternative ways of explaining something are

exhaustively enumerated, and all but one of the explanations are decisively eliminated, the overall pattern

of inference is deductively valid.
'There is no great mystery in this matter', he said, taking the cup of tea which I had poured out for him;

'the facts appear to admit of only one interpretation.* (Doyle4 - Sherlock Holmes

Even when they are not deductively valid, abductions, besides being intuitively appealing, can be seen

to carry logical force. When we have come up with all of the "plausible" explanations we can find for

some body of data, and have found compelling, if not decisive, evidence against all but one, then we

have good reasons for accepting that one best explanation. Reasons against the other alternatives have

been transformed into reasons for acceting the one. Whether we suspend judgment. or go ahead and

accept the indicated explanation with some particular degree of confidence, should properly depend on

the factors we have enumerated above.



5 3
C. S. Peirce used the term "abduction" for a form of inference close to what we descnbe 3

here [Peirce-pl5Off]. Gilbert Harman and others have written of "inference to the best explanation" for

essentially the same pattern [HARMAN-65, ENNIS-68, JOSEPHSON-82; and xxLycan calls it "the 3
explanatory inference" [Lycan-EV]. Sometimes a distinction has been made between an initial process of

coming up with explanatorily useful hypothesis alternatives, and a subsequent process of critical 3
acceptance where a decision is made as to which explanation is best. Often the term *abduction* has

been reserved for the initial, hypothesis-originating stage [Peirce-p1 50ff]. We use the term here for the 3
whole process of inferring from the data to the best explanation.

John McCarthy has proposed an inference form called "circumscription" to express the logical leap of

assuming that all the objects I know about with property P, are in fact all of the objects that exist which 3
have property P. [McCarthy] The leap of assuming (in effect) that all of the plausible explanations we can

find, are in fact all of the plausible explanations, can be seen as an application of circumscription. Since 3
circumscription is obviously not a logical axiom (sometimes a circumscription is a reasonable step to take,

and sometimes not) it must be that some factors of the situation determine whether a step which has the 3
form of a circumscription is reasonable or intelligent. We have identified above a number of the factors

relevant to a presumption that we have covered for all plausible explanations. 3
Arguably abduction is itself an epistemologically fundamental form of reasoning, not reducible to 3

deduction, probabilistic induction, or any combination of them. [HARMAN-65, MYDISS-CH3.

Whether or not abductions can be justified on logical grounds, they appear ubitiquous in the un- 3
selfconscious reasonings, interpretations, and perceivings of ordinary life, and in the more critically self

aware reasonings upon which scientific theories are based (MYDISS.77ffJ. It is a common view that 3
diagnostic reasoning in general Is abduction [Cham85, Pople73, REGGIA85a]. The idea is that the task

of a diagnostic reasoner is to come up with a best explanation for the symptoms, findings for the case I
which show abnormal values. The explanatory hypotheses appropriate for diagnosis are malfunction

hypotheses - typically disease hypotheses for physicians, and broken-part hypotheses for mechanical

systems. 1
The characteristic reasoning processes of fictional detectives has been characterized as

abduction [SEBEOK-83. It has been alleged that there are at least 217 abductions to be found in the 3
Sherlock Holmes canon [TRUZZI-217].

I
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3I The following example is offered in the spirit of showing that abductive reasoning is quite ordinary and

commonsensical.

Joe: Why are you pulling into the filling station?

Tidmarsh: Because the gas tank is nearly empty.

Joe: What makes you think so?

STidmarsh: Because the gas gauge indicates nearly empty. Also I have no reason to think that
the gauge is broken, and it has been a long time since I filled up the tank.

3 Under the circumstances, the nearly empty tank is the best available explanation for the gauge indication.

Tidmarsh's other remarks can be understood as being directed to ruling out a possible competing

3 explanation (broken gauge) and supporting the plausibility of the preferred explanation.

3. Organizing Concepts, Assembling Hypotheses
In some problem situations abduction can be accomplished by a relatively simple matching

3 mechanism, with no particular concern taken for focusing the control of which explanatory concept to

consider, or for controlling the assembly of composite explanations. For example, if there are only a small

3 number of potentially applicable explanatory concepts, and if time and other computational resources are

sufficiently abundant, then each hypothesis can be considered explicitly. Of course it is a pretty limited

3 intelligence that can afford to try out each of its ideas explicitly on each situation. The classification

mechanism we describe here can be seen as meeting the need for organizing the prestored explanatory

3 concepts, and for controlling access to them. It provides a good mechanism for the job whenever

knowledge is available of the right sort to make it go.

IIf the number of potentially applicable hypotheses is at all large, and if more than one can be correct at

the same time, then the combinatorics of the situation will not permit us to have one pre-established

pattern for each possible conclusion. One main alternative is to actively construct the abductive

3 conclusion as a combination of sub-hypotheses. Up to 2n different combined conclusions are made

available by assembling from a space of n possible hypotheses. Thus a very large space of possible

3 conclusions can result from a relatively small space of primitive categories. For example the Red-2

system has 54 most-detailed hypothesis categories, giving rise to 2 4 or more than 1016 potential

3 conclusions. (Many of these, however, would not be internally consistent, and so would never be

produced by the system. Eliminating inconsistent conclusions still leaves more than 1012 possible

3conclusions.) The mechanism we describe here is capable of efficiently picking out the best combination,

even from so large a space.I
I
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However access to plausibly applicable concepts is controlled, if knowledge is available so that an

accurate confidence evaluation can be made for each concept in isolation from all of the others, then a

composite abductive conclusion can be simply formed as the conjunction of all those concepts that match

above some threshold of confidence. Yet this sort of decisive recognition knowledge is rarely available.

At the time that knowledge is compiled for a concept, knowledge for decisive confirmation (so called

"pathognomonic evidence") may be unavailable, so that the very strongest that can be determined based

on direct evidence is that it is "very likely" that the concept applies to the situation. Psychiatric diagnoses

probably tend to be of this sort. More significantly, at run time there will often be too little actual data

about the situation to rule-in and rule-out decisively based on local match, even if there are potential items

that would be decisive if they were available. When the data is too weak to resolve the situation besed

only on local matching, taking account of the interactions between hypotheses can significantly contribute

to getting more conclusion out of the data. An important non-local way to achieve a high degree of

confidence is to explicitly rule out alternative ways of explaining things, so that some of the data have only

one possible explanation. When this can be done a small hypothesis will stand out as a best explanation

for a portion of the data, and thus be a good candidate for inclusion as part of the composite best

explanation for the case. In this way a small abduction over a portion of the data is performed in support

of the larger abduction necessary for solving the whole problem. Besides the role of explanatory

alternatives, hypotheses may interact in a number of other ways bearing on acceptance, some of which

we will discuss later on. In general our explanatory concepts rarely have the kind of independence

required for completely separate evaluation to be a viable method, and some form of active control over

the formation of composites will be necessary.

4. The Mechanism

The overall function of an abduction machine can be described as that of producing a "best

explanation" for a given set of data. An important side effect should be that information is made available

about where there are alternative ways of explaining things, so that this information can be used for

critically assessing that proposed best explanation, deciding where and how far to trust it.

We present here a functional description of a particular abstract abduction machine, which we may as

well call "the Red inference engine" in honor of the system from which it is abstracted. We include

enough detail about the major algorithms to make it clear how they work.

II
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4.1. Task and Subtasks

Suppose that we intend to build a knowledge-based system to capture expertise at a certain abductive

task. That is, our system is to take, as input, data of a certain type; and produce, as output best

explanations for a well-defined subset of the input data. Suppose that we are given a large number of

potentially applicable hypothesis "concepts" or "frames" to base the system on; and that more than one

concept can correctly apply at the same time.

Notice that this is precisely the diagnostic situation a physician must face, where the pre-enumerated

hypotheses correspond to known and named diseases, and where multiple diseases are common,

especially among the very sick people seen at major hospitals, and among those with unobvious

ailments. Notice too that this is the situation confronted by the operator of a chemical processing or

nuclear power plant, where a single original malfunction can quickly cascade into a multiple malfunction

situation. Notice also that this is (an aspect of) the situation faced by any intelligent knowledge-using

agent facing a complex, changing world, armed primarily with "concepts" of what is possible, and having

the goal of trying to "understand" some part of its experience by forming a "good" composite hypothesis.

Suppose further that interactions of various sorts between the pre-enumerated hypotheses can occur,

making it unsatisfactory to just match each separately to the case and accept all those above a certain

threshold of confidence.

One way to organize a system for this sort of task, and indeed the organization described here, is to

set up separate problem-solng structures for the distinct subtasks of:
" coming up with a relatively small number of "plausible" hypotheses from the much larger

number of prestored patterns,

" building a "best" composite hypothesis using these plausible hypotheses as available parts,
including testing and improving the "goodness" of the composite.

We will see that this decomposition provides a good way of controlling the potentially explosive

combinatorics of the problem.

4.2. Removing Irrelevant and Unlikely Hypotheses

By setting one problem solver to filter the primitive hypotheses, letting through only those plausible for

the case, we potentially make a great computational contribution to the problem of finding the best

composite. By making only moderate cuts in the number, say n, of hypothesis parts to consider, we can

make quite deep cuts in the 2n composites that can be generated from them. For example if we assume
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that 63 prestored hypothesis patterns get cut down to 8 which are plausible for the case at hand, we have 3
cut the number of potentially generable composites from 263, which is the number of grains of rice on the

last square of the chessboard in the classical story, or more than 9 quintillion; down to 28 = 256. U
The INTERNIST system IMILLER-85] (for diagnosis in internal medicine) can be viewed as doing this 3

sort of hypothesis screening when it considers only the subset of prestored diseases that are "evoked" by

the present findings. In this way it screens out those hypothesis which are completely irrelevant for

explaining the findings. It cuts the number down even further when it scores the evoked diseases for

confidence and only continues to consider those above a certain threshold. This can be seen as a kind of 3
screening out of hypotheses for low likelihood of being correct, likelihood being measured primanly by

quality of match to the case data. 5
The DENDRAL system [Buchanan-69 (for elucidating molecular structure from mass spectrogram and

other data) explicitly performs such a screening subtask. During the initial "planning" phase it uses the

data provided to it to generate a "BADLIST" of molecular substructures that must not appear in the

hypothesized composite structures. This BADLIST is used to constrain the search space during the I
subsequent enumeration of all possible molecular structures consistent with the constraints. That is, (in

the present terms) DENDRAL first rules out certain hypotheses for bad match to the case data, and then

generates all possible composite hypotheses consistent with not including the ruled-out ones (and other

constraints). We note that DENDRAL devotes a separate problem solver, with its own knowledge

structures, to the initial screening task. 5
In the generalized set covering model of diagnosis and abduction [Reggia83, Reggia85b] a disease is

associated with a certain set of findings that it potentially covers (i.e. that it can explain if they are U

present). The diagnostic task is then viewed as that of generating all possible minimum coverings for a

given set of findings, by sets associated with diseases (in order to use this as a basis for further question i
asking). In expert systems built using this model, a match score is computed for each relevant disease

each time new findings are entered for consideration, and match scores are ',sed, when appropriate, as •

the basis for categorically rejecting disease hypotheses from further consideration.

In the Red inference engine a separate problem-solving structure is devoted to the hypothesis

selection subtask. It runs first, as soon as the case is started up, and produces a set of hypotheses, each 3
hypothesis being the result of matching a prestored concept to the case. The hypothesis produced are all 1
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explicitly relevant for explaining features of the case, and many potential hypothesis do not appear,

having been categorically ruled out Each hypothesis arrives with a symbolic likelihood, the result

prmarily of case-specific quality of match, but also of case-independent knowledge about frequencies of

occurrence. The Red engine is distinguished from INTERNIST and the set-covenng systems in that it

devotes a separate problem solver explicitly to the hypothesis selection subtask. The advantage of a

separate problem solver is that it can be designed specifically for the generic hypothesis selection task.

4.3. Synthesizing a "Best" Composite

Synthesizing a "best" composite can turn out to be computationally expensive. If there are N plausible

hypotheses, then there is a space of 2N composites that can be made from them. If each needs to be

generated separately in order to determine which is best, then things can get rapidly out of hand. Clearly

it is normally preferable to adopt strategies that allow us to avoid generating all of the combinations.

Sometimes the problem might be completely dominated by the difficulty of coming up with even one

good composite explanation. It can be shown that the problem of coming up with just one consistent

composite hypothesis that explains everything, under conditions where many of the hypotheses are

incompatible with each other, is NP complete.b

The authors of DENDRAL saw its job as that of generating all possible composites that were allowable

based upon the previously established constraints on submolecules, and the known case-independent

chemical constraints on molecular structure. In contrast INTERNIST terminates (after cycles of

3 questioning, which we ignore for these purposes) when it comes up with its single best composite. The

set-covering model generates all possible composites of minimal cardinality, but avoids having to

3 enumerate them explicitly by factoring the combinations down into disjoint sets r go 'ors.

The Red engine first generates a single, tentative "best" composite, and then improves it by criticism

and suitable adjustment. In order for the the criticism to be accomplished, certain other composite

hypotheses are generated, but only a relatively small number of them. Again, the Red engine devotes a

distinct problem solver to a distinct task, in this case that of forming a best composite. The initial

composite hypothesis is formed to be one which explains all of the data (or that part that needs to be

by reduc~r to 3-SATISFIABIUTY [Gawy.791



explained), which is maximally plausible, or nearly so, and internally consistent.c

There are often more than simply computational feasibility considerations involved in a decision to

generate just the one best composite instead of generating all composites subject to some constraints.

Fo. purp,.se- of action an intelligent agent will typically need a single best estimate as to the nature of the 3
situation, even if it is only a guess, and does not need an enumeration of all possible things it could be.

By rapidly coming to a best estimate of the situation, the agent arrives quickly at a state where it is

prepared to take action. If it had to enumerate a large number of altematives, this would not only take

longer in the generation of them, it would take longer to figure out what to do next. It is difficult to figure

out what to do if proposed actions must try to cover for all of the possibilities.

This is not to deny the possibility of situations where careful and intelligent reasoning requires the I
generation of all of the plausible composites (i.e. those with a significant chance of being true), so that

they can all be examined and compared. This might especially be called for where the cost of making a

mistake is very high, as in medicine, or where there is plenty of time to think over the alternatives. Of I
course generating aft of the plausible composites will be computationally infeasible if there are a lot of

plausible fragments to choose from and the situation calls for many-part solutions. Moreover, besides I
being a computationally expensive strategy, generating all of the alternatives will not typically be

necessary, as we will often be able to compare composites implicitly, by comparing alternative ways of

putting them together. For example in comparing little hypotheses h, and h2 , we are implicitly (partially)

comparing all composites containing h, with those containing h2..

4.4. Criticism: Testing and Improving the Composite

In general it is important to have some idea of how good a composite is, so that an agent can decide

whether to act boldly or be cautious; for example deciding to gather more evidence before taking action.

Moreover, some critical assessment is necessary, because, as we said, the appropriate confidence of an

abductive conclusion depends in part upon how well it stacks up to the competition. This applies to the

evaluation of composite hypotheses no less than it applies to simple ones.

For each of the composite hypotheses it constructs, DENDRAL generates a prediction of how the mass 3

CNo that the findings to be explaind are in general a proper subet of all of the findings of the case, We might try to explain the

padts symptom, W we wont try to explain Ns age.

I
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spectrogram should appear. Those hypotheses whose predictions mismatch sufficiently are excluded,

and the rest are ranked based upon quality of this match. Again DENDRAL devotes a special knowledge-

based problem solver to the task, though it is tuned to predictions based upon molecular fragmentation,

and is not domain-independent in character.

INTERNIST and the set-covering model appear not to do anything that corresponds to this sort of

criticism. Indeed INTERNIST commits itself irrevocably to each hypothesis in the growing composite

before it goes on to decide on the next, and has nothing corresponding to the Red engine's tentative

initial assembly. The set covering model builds in the critical criterion of simplicity in the form of a

guarantee that the problem solver will produce composites with the minimum cardinality sufficient to

account for all of the findings.

4.5. Major Modules

The two major modules of the Red inference engine are:
" a classification machine for selecting plausible hypotheses,

" a specialized means-ends machine for assembling a subset of the plausible hypotheses into
a "best" composite explanation. The hypothesis assembler is under the control of an
overview critic (described here algorithnically) which uses the assembler, first to produce a
tentative initial composite, then repeatedly to explore the space of alternative composites,
and then finally to build a finished "best explanation" after the pointed investigation of
alternative explanations. This overview critic also does some processing to guarantee that
the composite it finally produces is parsimonious, i.e., has no explanatorily superfluous parts.

It is important to note that the second of these modules is usable separately from the first one, and so,

for example, some structural model of a device could be exploited in some fashion to generate

malfunction hypotheses. [DeKleer, Moorthy, GENE84] What the assembler/critic needs is a source of

hypotheses, each hypothesis offering to explain some portion of the data, and each evaluated to

determine a degree of plausibility. The assembler/critic will also need to have access to various sorts of

information about how the hypotheses interact

4.6. The Classification Machine

Taking the MDX (chandra79a, chandra83a] system as it's point of departure, the classifier is

implemented as a taxonomic hierarchy of hypothesis specialists. Each specialist in the hierarchy

specializes in a single "concept". When invoked it will match that concept to the details of the case,

either ruling it out of further consideration, or else producing a hypothesis that has an associated symbolic

likelihood, and offers to explain certain of the findings of the case.
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The hierarchy organizes the specialists from most general at the top, to most specific at the tip nodes.

The hypothesis selection activity proceeds in a top-down, more-general-to-more-refined manner, taking

advantage of the search pruning effect that comes from ruling -out whole subtrees of hypotheses by ruling 1
out at high levels of generality. This top-down, prune-or-pursue control regime, associated with MDX-like

diagnostic systems has been called "establish-refine". It can in principle proceed in parallel, matching of 3
two sub-concepts being typically independent of each other. By efficiently pruning the search for

plausible hypotheses, establish-refine is a significant contributor to taming the combinatorics of the 3
problem space. It makes it efficient and practical to search a very large space of stored concepts for just

those that plausibly apply to the case. !

4.7. Plausible Hypotheses 3
Each concept that is considered and cannot be ruled out is matched against the data of the case to

produce a description of which parts of the data it can explain (or contribute to explaining), and how !

plausible it is under the circumstances. Concept matching for plausibility has been discussed

elsewhere. [Bylander86c, Chan86a] Each plausible hypothesis delivered by the classifier thus comes 3
with:

* a description, particularized to the case, of which findings it offers to explain, 3
" a symbolic plausibility value representing a symbolic prima facie estimate of likelihood for the

hypothesis.

Each plausible hypothesis has its own consistent little story to tell, and to contribute to the larger story 3
representing the abductive conclusion.

4.8. Hypothesis Interactions

Hypothesis interactions are considered.to be of two general types, each with its own kind of 3
significance for the problem-solving:

* explanatory interactions, e.g., due to overlapping in what the hypotheses can account for, 3
and

* substantive interactions of mutual support and incompatibility, e.g., resulting from causal or
logical relations. 3

For example, two disease hypotheses might offer to explain the same findings without being especially

compatible or incompatible causally, logically, or definitionally. On the other hand hypotheses might be

mutually exclusive (e.g. because they represent distinct sub-types of the same disease), or mutually

supportive (e.g. because they are causally associated). The INTERNIST system did not make a clear 3
distinction between hypotheses which are competitors because they are both capable of explaining the I

I
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same fineings in the case (thus not both needed), and those that are competitors because they are

mutually exclusive. [Pople77] INTERNIST was really only concerned with the former type. In general the

elements of a diagnostic differential need to be exhaustive of the possibilities, so that at least one must be

correct, but they need not be mutually exclusive. If they are exhaustive then evidence against one of

them is traniformed into evidence in favor of the others.

The following types of hypothesis interaction can be accommodated and treated appropriately by the

mechanism we are describing. Appropriate handling for the first four of them has been implemented and

tested:

* A and B are mutually compatible, and represent explanatory alternatives where their
explanatory -apabilities overlap.

" Hypothesis A is a subhypothesis of B (i.e., a more detailed refinement).

• A and B are mutually incompatible.

" A and B cooperate additively where they overlap in what they can account for.

* Using A as part of an explanation suggests using B also.

• A, it it is accepted, raises explanatory questions of its own that can be resolved by appeal to
B.

An example of this last type occurs when we hypothesize the presence of a certain pathophysiological

state to explain certain symptoms, and then hypothesize some more remote cause to account for the

pathophysiological state. The tummy ache is explained by the presence of the ulcers, and the ulcers are

in turn explained by the anxiety neurosis.

4.9. The Hypothesis Assembler

A mechanism for hypotheses assembly is used which is reminiscent of the means-ends regime of

GPS, The General Problem Solver. [Newel1631 Its overall goal is to explain all of the finding that need to

be explained. It detects differences between the goal state (everything explained) and the present state

(the working hypothesis does not explain everything), and focuses on a salient difference (a most

significant unexplained finding). It uses this unexplained finding to select a hypothesis part to integrate

into the growing working composite.

We begin by describing a basic hypothesis assembler, capable only of treating one type of hypothesis

interaction. Then we will describe how it can be enhanced to treat the other types of interaction

appropriately.
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4.9.1. The Basic Assembler

The basic assembler treats only hypotheses that are mutually compatible, and that represent

explanatory alternatives where their explanatory capabilities overlap. A set of findings is given, the goal is

to assemble an explanation for them, and to do so in a manner that respects the plausibilities of the

candidate parts. It works by using the plausibilities to guide the means-ends search.

Procedure:
" Set the initial composite to the empty set.

" Loop until there is nothing left to explain, or nothing left that can be explained.
" Focus attention on an unexplained finding (initially the whole set is unexplained). If
domain knowledge is available to point out the most significant unexplained finding,
then well and good; but if not, then the choice can be made at random.

" Pick the most plausible hypothesis that explains that finding. If no plausible
explanation for it can be found, then note the finding as unexplainable and loop again,
else continue. If two or more explanations tie for maximal plausibility, choose one at
random.

" Include the newly chosen hypothesis into the set of hypotheses that constitutes the
growing composite hypothesis. That is, set the new composite to the union of the old
composite and the set whose member is the chosen hypothesis.

*Compute what the composite can now explain, and determine the unexplained
remainder.

SEnd loop. I
" Return the value of the composite.

The basic assembler produces a composite hypothesis which is as complete as possible. Since it uses I
the most plausible explanatory hypothesis at each choice point, the composite hypothesis is maximally

plausible as well, or nearly so.d

It is easy and computationally inexpensive to rid the composite of explanatorily superfluous parts.0 This 3
can be done after the composite is built, or else parsimony can be enforced as the assembly proceeds.

We thus arrive at a composite hypothesis which is as complete as possible, rnaximally plausible (or

nearly), and parsimonious.

8The conditons under which hi proems produces an oplmaly plausible composite have been investigated, and will possibly 3
form the subdt di a future pper. Yet in general this mechanism will deliver the "correct answer if one stands out on the basis of
the evidence. and wil fail only if the evidience of the case is week or erroneous, or if knowledge in the system is wrong or missing.
Thus guarantees of maximal plausibility for the composite are not reany very significant Intelligent agent do not need to be
eqecialy good at making forced choics between nearly equal alternatives.

OCheck through te parts in order of least plausible to mot plausible; for each part compute the explanatory capabilies with the
pat removed; and check to see if there is any loss.

m ,am m m mm lll imlllmllm l mne ll Il El II III
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Note that this interpretation of Occharn's Razor has clear epistemic virtues. Logically the composite

hypothesis is a conjunction of little hypotheses; so, if we remove one of the conjuncts the resulting

hypothesis is distinctly more likely to be true, since it makes fewer commitments. Superfluous hypothesis

parts make factual commitments, expose themselves to falsity, with no compensating gain in explanatory

power. Thus the sense of parsimony we propose here is such that the more parsimonious hypothesis is

more likely to be true.

Since the assembly process added monotonically to a growing hypothesis, with incrementally growing

explanatory power, and with no backtracking, the process is computationally very inexpensive, at least if it

is inexpensive to compute explanatory power. In general the greatest computational expense will be in

checking through the available hypotheses to determine which one is the most plausible way to explain

the finding of attention. But the classifier will collaborate to reduce the alternatives to a relatively small

number, and one pass through the set will suffice. Thus the whole process of assembly is

computationally very efficient. [ALLE87]

4.9.2. Extensions and Elaborations to the Basic Assembler

Extensions can be made to the basic assembler to handle the other types of hypothesis interaction we

have mentioned.

If hypotheses in the space come with subtype relationships, as they normally would with a hierarchical

classifier, the assembler can preferentially pursue the goal of explanatory completeness and secondarily

pursue the goal of refining the constituent hypotheses down to the level of most detail.

A more difficult problem is in devising a strategy for when some of the hypotheses in the space are

mutually incompatible.f What was done in Red-2 is to maintain the consistency of the growing hypothesis

as the assembly proceeds. If a finding is encountered whose only available maximally plausible

explainers are incompatible with something already present in the growing hypothesis, then one of these

newly encountered hypotheses is included in the growing hypothesis, removing from the composite any

parts inconsistent with the new one.g The basic idea is that the finding must be explained, even if that

is assume the ability to detect that hypothees are inconatible.

Ilf we remove pats from the growing hypothesis we introduc the danger of an ifinte lop, but fortunaty thi can be deal with
fairly reedly. We suitably rmss the standards for reintroducing a hypothesis for the second time in precisely the same situation in
which it was fOrt introduced. The second time around we requie tW there be no net loss of explanatory power for the whole
assembly resulting from reintroducing the hypothesis and removing its contrares from the assembly. There are a variety of
a ace ptablA measure of explanatory power that wil seve here to guarantee progress.
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forces a serious revision of the growing hypothesis. This seems to be a rather weak way of handling

incompatibles, and the authors feel that significant improvements are possible.

If hypotheses can cooperate additively where they overlap in what they can explain, all we need to do

is to suitably incorporate this knowledge into the methods for computing what a composite hypothesis can

explain.

In order to handle the kind of hypothesis interaction where one hypothesis suggests the use of another,

as for example if there is available knowledge of a statistical association, we can give extra plausibility

credit to the suggested hypothesis if the hypothesis making the suggestion is already part of the growing

composite. The availability of a way to grow the hypothesis preferentially along lines of statistical

association provides a rudimentary ability for it to grow along causal lines as well.

A more interesting ability to grow along causal lines results if we permit one hypothesis, if it is accepted 3
into the growing hypothesis, to raise explanatory needs of its own. For example, a newly added

hypothesis can be posted as a kind of higher-level finding which needs to be explained in its turn by the 3
growing assembly. Thus at the sametime that the newly added hypothesis succeeds in explaining some

of the findings, it introduces a "loose end". This provides a way in which the growing hypothesis can

move from hypotheses close to the findings of the case, and towards more and more remote causes of

those findings. 3
4.10. The Overview Critic 3

Procedure:
" The assembler is invoked to produce a tentative best explanation. 3
" Explanatorily superfluous parts are removed.

" The assembler is invoked repeatedly as necessary to assess which of the hypotheses in the
composite are Indlspensable. A hypothesis is judged indispensable if removing it from a
composite which is a complete explanation leaves behind a composite which cannot then be I
assembled to completion without reintroducing the removed one. It follows that a hypothesis
is indispensable if and only if something that it explains has no other plausible explanation. It
is important to distinguish between hypothesis parts which are non-superfluous relative to I
some particular composite, that is they cannot be removed without explanatory loss, and
indispensables without which no complete explanation can be found in the whole hypothesis
space.

" The non-indispensable parts of the composite are then removed, and the assembler is
invoked again to rebuild from the core of indispensables back to a complete explanation.
This rebuilding process might again introduce explanatorily superfluous parts that will need to
be cleaned out, but it cannot introduce any more indispensables. Since an indispensable
explains something that has no other plausible explanation, every Indispensable is already Il

n3
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present in any complete explanation.

e Any newly introduced explanatorily superfluous parts are removed.

At the end of this process the composite hypothesis explains as much as possible, is maximally

plausible (or nearly so), is parsimonious, and has been built up by going from a core of hypotheses which

are most certain.

At this stage the best explanation has been inferred, or at least A best explanation has been inferred,

there being no a priori guarantee that a best explanation is unique. Under some circumstances the

reasoning process will have virtually proved the correctness of its conclusion. If each part of the

composite is indespensible (in the sense above), then the system has proved that it has produced the

correct explanation, assuming that the data is correct and the knowledge base is complete. That is, the

system will have proved that it has come up with the only complete and parsimonious explanation

available to it. When parts of the conclusion are not indispensible, the system will have discovered that

alternative explanations are possible, so appropriate cautions may be taken in using the abductive

conclusion.

5. Extensions and Elaborations of the Mechanism

The degree of intimacy, and the nature of the relationships, between the classifier, various critics, and

the means-ends assembler, is an unresolved research issue which we are actively exploring. In Red-2,

the classifier runs first, producing a set of plausible hypotheses, and then is followed by the critic, which

uses the assembler to produce the best explanation. In the future we anticipate a version where the

classifier and an assembler/critic run concurrently, with the latter using its perspective on the progress of

the problem solving to help guide the search for plausible hypotheses. Red-2's assemblercritic built up

composite hypotheses using only tip node hypotheses delivered to it by the classifier. We anticipate that

in the next version composites will first be assembled at higher levels of generality, and then refined into

more detailed hypotheses using nodes lower in the hierarchy. More distantly we envision a version where

lots of little hypothesis assemblers and critics are distributed over a problem solving structure that makes

local abductions, producing little assembled best explanations. By solving subproblems the little

abducers will serve the needs of larger abducers, and make it possible to assemble hypotheses from

parts which are themselves assemblies.
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6. Summary

We have described how best explanations can be inferred by a mechanism which tames the

combinatorics of very large spaces of explanatory hypotheses. Structured conclusions can be arnved at 3
whose parts are connected by relationships of type-subtype, statistical association, and explainer-

explained. An instance of this machine exists, exercising some of the capabilities we attribute to the 3
abstract machine, and arriving at correct answers in complicated situations.

Although the mechanism is an abstraction of the architecture of the Red-2 system, DENDRAL, i

INTERNIST, and systems based on the Set-Covering model of abduction realize it too, in varying 3
degrees. In this light the present offering should be seen, not so much as contributing new mechanisms,

but as showing how existing systems can be analyzed; and how, once we understand the tasks, efficient 3
mechanisms can be devised specifically to achieve them.

More grandly we may say that a computational description has been given to the functional architecture i
of a possible mind, or rather, of a certain dimension or slice of a possible mind. The kind of synthesis of

explanatory hypotheses we describe here is a generic task of higher intelligence. It must be

accomplished somehow by any intelligent, knowledge-using agent that comes to "know" by calling upon

"concepts", attaching them to situations or objects, and using the resulting little hypotheses as matenals

to form composite "best explanations". The task is general, but specific. There are a limited number of

functional architectures that could accomplish it, especially when account must be taken of the constraints

imposed by limited knowledge, lirrited time, and limited computational resources. There are even fewer

architectures that are especially suited to the task, and we have just described one of them.
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